// Package simple contains a linter for Go source code. package simple // import "honnef.co/go/tools/simple" import ( "fmt" "go/ast" "go/constant" "go/token" "go/types" "reflect" "strings" . "honnef.co/go/tools/arg" "honnef.co/go/tools/internal/sharedcheck" "honnef.co/go/tools/lint" . "honnef.co/go/tools/lint/lintdsl" "golang.org/x/tools/go/types/typeutil" ) type Checker struct { CheckGenerated bool MS *typeutil.MethodSetCache } func NewChecker() *Checker { return &Checker{ MS: &typeutil.MethodSetCache{}, } } func (*Checker) Name() string { return "gosimple" } func (*Checker) Prefix() string { return "S" } func (c *Checker) Init(prog *lint.Program) {} func (c *Checker) Checks() []lint.Check { return []lint.Check{ {ID: "S1000", FilterGenerated: true, Fn: c.LintSingleCaseSelect, Doc: docS1000}, {ID: "S1001", FilterGenerated: true, Fn: c.LintLoopCopy, Doc: docS1001}, {ID: "S1002", FilterGenerated: true, Fn: c.LintIfBoolCmp, Doc: docS1002}, {ID: "S1003", FilterGenerated: true, Fn: c.LintStringsContains, Doc: docS1003}, {ID: "S1004", FilterGenerated: true, Fn: c.LintBytesCompare, Doc: docS1004}, {ID: "S1005", FilterGenerated: true, Fn: c.LintUnnecessaryBlank, Doc: docS1005}, {ID: "S1006", FilterGenerated: true, Fn: c.LintForTrue, Doc: docS1006}, {ID: "S1007", FilterGenerated: true, Fn: c.LintRegexpRaw, Doc: docS1007}, {ID: "S1008", FilterGenerated: true, Fn: c.LintIfReturn, Doc: docS1008}, {ID: "S1009", FilterGenerated: true, Fn: c.LintRedundantNilCheckWithLen, Doc: docS1009}, {ID: "S1010", FilterGenerated: true, Fn: c.LintSlicing, Doc: docS1010}, {ID: "S1011", FilterGenerated: true, Fn: c.LintLoopAppend, Doc: docS1011}, {ID: "S1012", FilterGenerated: true, Fn: c.LintTimeSince, Doc: docS1012}, {ID: "S1016", FilterGenerated: true, Fn: c.LintSimplerStructConversion, Doc: docS1016}, {ID: "S1017", FilterGenerated: true, Fn: c.LintTrim, Doc: docS1017}, {ID: "S1018", FilterGenerated: true, Fn: c.LintLoopSlide, Doc: docS1018}, {ID: "S1019", FilterGenerated: true, Fn: c.LintMakeLenCap, Doc: docS1019}, {ID: "S1020", FilterGenerated: true, Fn: c.LintAssertNotNil, Doc: docS1020}, {ID: "S1021", FilterGenerated: true, Fn: c.LintDeclareAssign, Doc: docS1021}, {ID: "S1023", FilterGenerated: true, Fn: c.LintRedundantBreak, Doc: docS1023}, {ID: "S1024", FilterGenerated: true, Fn: c.LintTimeUntil, Doc: docS1024}, {ID: "S1025", FilterGenerated: true, Fn: c.LintRedundantSprintf, Doc: docS1025}, {ID: "S1028", FilterGenerated: true, Fn: c.LintErrorsNewSprintf, Doc: docS1028}, {ID: "S1029", FilterGenerated: false, Fn: c.LintRangeStringRunes, Doc: docS1029}, {ID: "S1030", FilterGenerated: true, Fn: c.LintBytesBufferConversions, Doc: docS1030}, {ID: "S1031", FilterGenerated: true, Fn: c.LintNilCheckAroundRange, Doc: docS1031}, {ID: "S1032", FilterGenerated: true, Fn: c.LintSortHelpers, Doc: docS1032}, {ID: "S1033", FilterGenerated: true, Fn: c.LintGuardedDelete, Doc: ``}, {ID: "S1034", FilterGenerated: true, Fn: c.LintSimplifyTypeSwitch, Doc: ``}, } } func (c *Checker) LintSingleCaseSelect(j *lint.Job) { isSingleSelect := func(node ast.Node) bool { v, ok := node.(*ast.SelectStmt) if !ok { return false } return len(v.Body.List) == 1 } seen := map[ast.Node]struct{}{} fn := func(node ast.Node) { switch v := node.(type) { case *ast.ForStmt: if len(v.Body.List) != 1 { return } if !isSingleSelect(v.Body.List[0]) { return } if _, ok := v.Body.List[0].(*ast.SelectStmt).Body.List[0].(*ast.CommClause).Comm.(*ast.SendStmt); ok { // Don't suggest using range for channel sends return } seen[v.Body.List[0]] = struct{}{} j.Errorf(node, "should use for range instead of for { select {} }") case *ast.SelectStmt: if _, ok := seen[v]; ok { return } if !isSingleSelect(v) { return } j.Errorf(node, "should use a simple channel send/receive instead of select with a single case") } } j.Pkg.Inspector.Preorder([]ast.Node{(*ast.ForStmt)(nil), (*ast.SelectStmt)(nil)}, fn) } func (c *Checker) LintLoopCopy(j *lint.Job) { fn := func(node ast.Node) { loop := node.(*ast.RangeStmt) if loop.Key == nil { return } if len(loop.Body.List) != 1 { return } stmt, ok := loop.Body.List[0].(*ast.AssignStmt) if !ok { return } if stmt.Tok != token.ASSIGN || len(stmt.Lhs) != 1 || len(stmt.Rhs) != 1 { return } lhs, ok := stmt.Lhs[0].(*ast.IndexExpr) if !ok { return } if _, ok := j.Pkg.TypesInfo.TypeOf(lhs.X).(*types.Slice); !ok { return } lidx, ok := lhs.Index.(*ast.Ident) if !ok { return } key, ok := loop.Key.(*ast.Ident) if !ok { return } if j.Pkg.TypesInfo.TypeOf(lhs) == nil || j.Pkg.TypesInfo.TypeOf(stmt.Rhs[0]) == nil { return } if j.Pkg.TypesInfo.ObjectOf(lidx) != j.Pkg.TypesInfo.ObjectOf(key) { return } if !types.Identical(j.Pkg.TypesInfo.TypeOf(lhs), j.Pkg.TypesInfo.TypeOf(stmt.Rhs[0])) { return } if _, ok := j.Pkg.TypesInfo.TypeOf(loop.X).(*types.Slice); !ok { return } if rhs, ok := stmt.Rhs[0].(*ast.IndexExpr); ok { rx, ok := rhs.X.(*ast.Ident) _ = rx if !ok { return } ridx, ok := rhs.Index.(*ast.Ident) if !ok { return } if j.Pkg.TypesInfo.ObjectOf(ridx) != j.Pkg.TypesInfo.ObjectOf(key) { return } } else if rhs, ok := stmt.Rhs[0].(*ast.Ident); ok { value, ok := loop.Value.(*ast.Ident) if !ok { return } if j.Pkg.TypesInfo.ObjectOf(rhs) != j.Pkg.TypesInfo.ObjectOf(value) { return } } else { return } j.Errorf(loop, "should use copy() instead of a loop") } j.Pkg.Inspector.Preorder([]ast.Node{(*ast.RangeStmt)(nil)}, fn) } func (c *Checker) LintIfBoolCmp(j *lint.Job) { fn := func(node ast.Node) { expr := node.(*ast.BinaryExpr) if expr.Op != token.EQL && expr.Op != token.NEQ { return } x := IsBoolConst(j, expr.X) y := IsBoolConst(j, expr.Y) if !x && !y { return } var other ast.Expr var val bool if x { val = BoolConst(j, expr.X) other = expr.Y } else { val = BoolConst(j, expr.Y) other = expr.X } basic, ok := j.Pkg.TypesInfo.TypeOf(other).Underlying().(*types.Basic) if !ok || basic.Kind() != types.Bool { return } op := "" if (expr.Op == token.EQL && !val) || (expr.Op == token.NEQ && val) { op = "!" } r := op + Render(j, other) l1 := len(r) r = strings.TrimLeft(r, "!") if (l1-len(r))%2 == 1 { r = "!" + r } if IsInTest(j, node) { return } j.Errorf(expr, "should omit comparison to bool constant, can be simplified to %s", r) } j.Pkg.Inspector.Preorder([]ast.Node{(*ast.BinaryExpr)(nil)}, fn) } func (c *Checker) LintBytesBufferConversions(j *lint.Job) { fn := func(node ast.Node) { call := node.(*ast.CallExpr) if len(call.Args) != 1 { return } argCall, ok := call.Args[0].(*ast.CallExpr) if !ok { return } sel, ok := argCall.Fun.(*ast.SelectorExpr) if !ok { return } typ := j.Pkg.TypesInfo.TypeOf(call.Fun) if typ == types.Universe.Lookup("string").Type() && IsCallToAST(j, call.Args[0], "(*bytes.Buffer).Bytes") { j.Errorf(call, "should use %v.String() instead of %v", Render(j, sel.X), Render(j, call)) } else if typ, ok := typ.(*types.Slice); ok && typ.Elem() == types.Universe.Lookup("byte").Type() && IsCallToAST(j, call.Args[0], "(*bytes.Buffer).String") { j.Errorf(call, "should use %v.Bytes() instead of %v", Render(j, sel.X), Render(j, call)) } } j.Pkg.Inspector.Preorder([]ast.Node{(*ast.CallExpr)(nil)}, fn) } func (c *Checker) LintStringsContains(j *lint.Job) { // map of value to token to bool value allowed := map[int64]map[token.Token]bool{ -1: {token.GTR: true, token.NEQ: true, token.EQL: false}, 0: {token.GEQ: true, token.LSS: false}, } fn := func(node ast.Node) { expr := node.(*ast.BinaryExpr) switch expr.Op { case token.GEQ, token.GTR, token.NEQ, token.LSS, token.EQL: default: return } value, ok := ExprToInt(j, expr.Y) if !ok { return } allowedOps, ok := allowed[value] if !ok { return } b, ok := allowedOps[expr.Op] if !ok { return } call, ok := expr.X.(*ast.CallExpr) if !ok { return } sel, ok := call.Fun.(*ast.SelectorExpr) if !ok { return } pkgIdent, ok := sel.X.(*ast.Ident) if !ok { return } funIdent := sel.Sel if pkgIdent.Name != "strings" && pkgIdent.Name != "bytes" { return } newFunc := "" switch funIdent.Name { case "IndexRune": newFunc = "ContainsRune" case "IndexAny": newFunc = "ContainsAny" case "Index": newFunc = "Contains" default: return } prefix := "" if !b { prefix = "!" } j.Errorf(node, "should use %s%s.%s(%s) instead", prefix, pkgIdent.Name, newFunc, RenderArgs(j, call.Args)) } j.Pkg.Inspector.Preorder([]ast.Node{(*ast.BinaryExpr)(nil)}, fn) } func (c *Checker) LintBytesCompare(j *lint.Job) { fn := func(node ast.Node) { expr := node.(*ast.BinaryExpr) if expr.Op != token.NEQ && expr.Op != token.EQL { return } call, ok := expr.X.(*ast.CallExpr) if !ok { return } if !IsCallToAST(j, call, "bytes.Compare") { return } value, ok := ExprToInt(j, expr.Y) if !ok || value != 0 { return } args := RenderArgs(j, call.Args) prefix := "" if expr.Op == token.NEQ { prefix = "!" } j.Errorf(node, "should use %sbytes.Equal(%s) instead", prefix, args) } j.Pkg.Inspector.Preorder([]ast.Node{(*ast.BinaryExpr)(nil)}, fn) } func (c *Checker) LintForTrue(j *lint.Job) { fn := func(node ast.Node) { loop := node.(*ast.ForStmt) if loop.Init != nil || loop.Post != nil { return } if !IsBoolConst(j, loop.Cond) || !BoolConst(j, loop.Cond) { return } j.Errorf(loop, "should use for {} instead of for true {}") } j.Pkg.Inspector.Preorder([]ast.Node{(*ast.ForStmt)(nil)}, fn) } func (c *Checker) LintRegexpRaw(j *lint.Job) { fn := func(node ast.Node) { call := node.(*ast.CallExpr) if !IsCallToAST(j, call, "regexp.MustCompile") && !IsCallToAST(j, call, "regexp.Compile") { return } sel, ok := call.Fun.(*ast.SelectorExpr) if !ok { return } if len(call.Args) != 1 { // invalid function call return } lit, ok := call.Args[Arg("regexp.Compile.expr")].(*ast.BasicLit) if !ok { // TODO(dominikh): support string concat, maybe support constants return } if lit.Kind != token.STRING { // invalid function call return } if lit.Value[0] != '"' { // already a raw string return } val := lit.Value if !strings.Contains(val, `\\`) { return } if strings.Contains(val, "`") { return } bs := false for _, c := range val { if !bs && c == '\\' { bs = true continue } if bs && c == '\\' { bs = false continue } if bs { // backslash followed by non-backslash -> escape sequence return } } j.Errorf(call, "should use raw string (`...`) with regexp.%s to avoid having to escape twice", sel.Sel.Name) } j.Pkg.Inspector.Preorder([]ast.Node{(*ast.CallExpr)(nil)}, fn) } func (c *Checker) LintIfReturn(j *lint.Job) { fn := func(node ast.Node) { block := node.(*ast.BlockStmt) l := len(block.List) if l < 2 { return } n1, n2 := block.List[l-2], block.List[l-1] if len(block.List) >= 3 { if _, ok := block.List[l-3].(*ast.IfStmt); ok { // Do not flag a series of if statements return } } // if statement with no init, no else, a single condition // checking an identifier or function call and just a return // statement in the body, that returns a boolean constant ifs, ok := n1.(*ast.IfStmt) if !ok { return } if ifs.Else != nil || ifs.Init != nil { return } if len(ifs.Body.List) != 1 { return } if op, ok := ifs.Cond.(*ast.BinaryExpr); ok { switch op.Op { case token.EQL, token.LSS, token.GTR, token.NEQ, token.LEQ, token.GEQ: default: return } } ret1, ok := ifs.Body.List[0].(*ast.ReturnStmt) if !ok { return } if len(ret1.Results) != 1 { return } if !IsBoolConst(j, ret1.Results[0]) { return } ret2, ok := n2.(*ast.ReturnStmt) if !ok { return } if len(ret2.Results) != 1 { return } if !IsBoolConst(j, ret2.Results[0]) { return } j.Errorf(n1, "should use 'return ' instead of 'if { return }; return '") } j.Pkg.Inspector.Preorder([]ast.Node{(*ast.BlockStmt)(nil)}, fn) } // LintRedundantNilCheckWithLen checks for the following reduntant nil-checks: // // if x == nil || len(x) == 0 {} // if x != nil && len(x) != 0 {} // if x != nil && len(x) == N {} (where N != 0) // if x != nil && len(x) > N {} // if x != nil && len(x) >= N {} (where N != 0) // func (c *Checker) LintRedundantNilCheckWithLen(j *lint.Job) { isConstZero := func(expr ast.Expr) (isConst bool, isZero bool) { _, ok := expr.(*ast.BasicLit) if ok { return true, IsZero(expr) } id, ok := expr.(*ast.Ident) if !ok { return false, false } c, ok := j.Pkg.TypesInfo.ObjectOf(id).(*types.Const) if !ok { return false, false } return true, c.Val().Kind() == constant.Int && c.Val().String() == "0" } fn := func(node ast.Node) { // check that expr is "x || y" or "x && y" expr := node.(*ast.BinaryExpr) if expr.Op != token.LOR && expr.Op != token.LAND { return } eqNil := expr.Op == token.LOR // check that x is "xx == nil" or "xx != nil" x, ok := expr.X.(*ast.BinaryExpr) if !ok { return } if eqNil && x.Op != token.EQL { return } if !eqNil && x.Op != token.NEQ { return } xx, ok := x.X.(*ast.Ident) if !ok { return } if !IsNil(j, x.Y) { return } // check that y is "len(xx) == 0" or "len(xx) ... " y, ok := expr.Y.(*ast.BinaryExpr) if !ok { return } if eqNil && y.Op != token.EQL { // must be len(xx) *==* 0 return } yx, ok := y.X.(*ast.CallExpr) if !ok { return } yxFun, ok := yx.Fun.(*ast.Ident) if !ok || yxFun.Name != "len" || len(yx.Args) != 1 { return } yxArg, ok := yx.Args[Arg("len.v")].(*ast.Ident) if !ok { return } if yxArg.Name != xx.Name { return } if eqNil && !IsZero(y.Y) { // must be len(x) == *0* return } if !eqNil { isConst, isZero := isConstZero(y.Y) if !isConst { return } switch y.Op { case token.EQL: // avoid false positive for "xx != nil && len(xx) == 0" if isZero { return } case token.GEQ: // avoid false positive for "xx != nil && len(xx) >= 0" if isZero { return } case token.NEQ: // avoid false positive for "xx != nil && len(xx) != " if !isZero { return } case token.GTR: // ok default: return } } // finally check that xx type is one of array, slice, map or chan // this is to prevent false positive in case if xx is a pointer to an array var nilType string switch j.Pkg.TypesInfo.TypeOf(xx).(type) { case *types.Slice: nilType = "nil slices" case *types.Map: nilType = "nil maps" case *types.Chan: nilType = "nil channels" default: return } j.Errorf(expr, "should omit nil check; len() for %s is defined as zero", nilType) } j.Pkg.Inspector.Preorder([]ast.Node{(*ast.BinaryExpr)(nil)}, fn) } func (c *Checker) LintSlicing(j *lint.Job) { fn := func(node ast.Node) { n := node.(*ast.SliceExpr) if n.Max != nil { return } s, ok := n.X.(*ast.Ident) if !ok || s.Obj == nil { return } call, ok := n.High.(*ast.CallExpr) if !ok || len(call.Args) != 1 || call.Ellipsis.IsValid() { return } fun, ok := call.Fun.(*ast.Ident) if !ok || fun.Name != "len" { return } if _, ok := j.Pkg.TypesInfo.ObjectOf(fun).(*types.Builtin); !ok { return } arg, ok := call.Args[Arg("len.v")].(*ast.Ident) if !ok || arg.Obj != s.Obj { return } j.Errorf(n, "should omit second index in slice, s[a:len(s)] is identical to s[a:]") } j.Pkg.Inspector.Preorder([]ast.Node{(*ast.SliceExpr)(nil)}, fn) } func refersTo(j *lint.Job, expr ast.Expr, ident *ast.Ident) bool { found := false fn := func(node ast.Node) bool { ident2, ok := node.(*ast.Ident) if !ok { return true } if j.Pkg.TypesInfo.ObjectOf(ident) == j.Pkg.TypesInfo.ObjectOf(ident2) { found = true return false } return true } ast.Inspect(expr, fn) return found } func (c *Checker) LintLoopAppend(j *lint.Job) { fn := func(node ast.Node) { loop := node.(*ast.RangeStmt) if !IsBlank(loop.Key) { return } val, ok := loop.Value.(*ast.Ident) if !ok { return } if len(loop.Body.List) != 1 { return } stmt, ok := loop.Body.List[0].(*ast.AssignStmt) if !ok { return } if stmt.Tok != token.ASSIGN || len(stmt.Lhs) != 1 || len(stmt.Rhs) != 1 { return } if refersTo(j, stmt.Lhs[0], val) { return } call, ok := stmt.Rhs[0].(*ast.CallExpr) if !ok { return } if len(call.Args) != 2 || call.Ellipsis.IsValid() { return } fun, ok := call.Fun.(*ast.Ident) if !ok { return } obj := j.Pkg.TypesInfo.ObjectOf(fun) fn, ok := obj.(*types.Builtin) if !ok || fn.Name() != "append" { return } src := j.Pkg.TypesInfo.TypeOf(loop.X) dst := j.Pkg.TypesInfo.TypeOf(call.Args[Arg("append.slice")]) // TODO(dominikh) remove nil check once Go issue #15173 has // been fixed if src == nil { return } if !types.Identical(src, dst) { return } if Render(j, stmt.Lhs[0]) != Render(j, call.Args[Arg("append.slice")]) { return } el, ok := call.Args[Arg("append.elems")].(*ast.Ident) if !ok { return } if j.Pkg.TypesInfo.ObjectOf(val) != j.Pkg.TypesInfo.ObjectOf(el) { return } j.Errorf(loop, "should replace loop with %s = append(%s, %s...)", Render(j, stmt.Lhs[0]), Render(j, call.Args[Arg("append.slice")]), Render(j, loop.X)) } j.Pkg.Inspector.Preorder([]ast.Node{(*ast.RangeStmt)(nil)}, fn) } func (c *Checker) LintTimeSince(j *lint.Job) { fn := func(node ast.Node) { call := node.(*ast.CallExpr) sel, ok := call.Fun.(*ast.SelectorExpr) if !ok { return } if !IsCallToAST(j, sel.X, "time.Now") { return } if sel.Sel.Name != "Sub" { return } j.Errorf(call, "should use time.Since instead of time.Now().Sub") } j.Pkg.Inspector.Preorder([]ast.Node{(*ast.CallExpr)(nil)}, fn) } func (c *Checker) LintTimeUntil(j *lint.Job) { if !IsGoVersion(j, 8) { return } fn := func(node ast.Node) { call := node.(*ast.CallExpr) if !IsCallToAST(j, call, "(time.Time).Sub") { return } if !IsCallToAST(j, call.Args[Arg("(time.Time).Sub.u")], "time.Now") { return } j.Errorf(call, "should use time.Until instead of t.Sub(time.Now())") } j.Pkg.Inspector.Preorder([]ast.Node{(*ast.CallExpr)(nil)}, fn) } func (c *Checker) LintUnnecessaryBlank(j *lint.Job) { fn1 := func(node ast.Node) { assign := node.(*ast.AssignStmt) if len(assign.Lhs) != 2 || len(assign.Rhs) != 1 { return } if !IsBlank(assign.Lhs[1]) { return } switch rhs := assign.Rhs[0].(type) { case *ast.IndexExpr: // The type-checker should make sure that it's a map, but // let's be safe. if _, ok := j.Pkg.TypesInfo.TypeOf(rhs.X).Underlying().(*types.Map); !ok { return } case *ast.UnaryExpr: if rhs.Op != token.ARROW { return } default: return } cp := *assign cp.Lhs = cp.Lhs[0:1] j.Errorf(assign, "should write %s instead of %s", Render(j, &cp), Render(j, assign)) } fn2 := func(node ast.Node) { stmt := node.(*ast.AssignStmt) if len(stmt.Lhs) != len(stmt.Rhs) { return } for i, lh := range stmt.Lhs { rh := stmt.Rhs[i] if !IsBlank(lh) { continue } expr, ok := rh.(*ast.UnaryExpr) if !ok { continue } if expr.Op != token.ARROW { continue } j.Errorf(lh, "'_ = <-ch' can be simplified to '<-ch'") } } fn3 := func(node ast.Node) { rs := node.(*ast.RangeStmt) // for x, _ if !IsBlank(rs.Key) && IsBlank(rs.Value) { j.Errorf(rs.Value, "should omit value from range; this loop is equivalent to `for %s %s range ...`", Render(j, rs.Key), rs.Tok) } // for _, _ || for _ if IsBlank(rs.Key) && (IsBlank(rs.Value) || rs.Value == nil) { j.Errorf(rs.Key, "should omit values from range; this loop is equivalent to `for range ...`") } } j.Pkg.Inspector.Preorder([]ast.Node{(*ast.AssignStmt)(nil)}, fn1) j.Pkg.Inspector.Preorder([]ast.Node{(*ast.AssignStmt)(nil)}, fn2) if IsGoVersion(j, 4) { j.Pkg.Inspector.Preorder([]ast.Node{(*ast.RangeStmt)(nil)}, fn3) } } func (c *Checker) LintSimplerStructConversion(j *lint.Job) { var skip ast.Node fn := func(node ast.Node) { // Do not suggest type conversion between pointers if unary, ok := node.(*ast.UnaryExpr); ok && unary.Op == token.AND { if lit, ok := unary.X.(*ast.CompositeLit); ok { skip = lit } return } if node == skip { return } lit, ok := node.(*ast.CompositeLit) if !ok { return } typ1, _ := j.Pkg.TypesInfo.TypeOf(lit.Type).(*types.Named) if typ1 == nil { return } s1, ok := typ1.Underlying().(*types.Struct) if !ok { return } var typ2 *types.Named var ident *ast.Ident getSelType := func(expr ast.Expr) (types.Type, *ast.Ident, bool) { sel, ok := expr.(*ast.SelectorExpr) if !ok { return nil, nil, false } ident, ok := sel.X.(*ast.Ident) if !ok { return nil, nil, false } typ := j.Pkg.TypesInfo.TypeOf(sel.X) return typ, ident, typ != nil } if len(lit.Elts) == 0 { return } if s1.NumFields() != len(lit.Elts) { return } for i, elt := range lit.Elts { var t types.Type var id *ast.Ident var ok bool switch elt := elt.(type) { case *ast.SelectorExpr: t, id, ok = getSelType(elt) if !ok { return } if i >= s1.NumFields() || s1.Field(i).Name() != elt.Sel.Name { return } case *ast.KeyValueExpr: var sel *ast.SelectorExpr sel, ok = elt.Value.(*ast.SelectorExpr) if !ok { return } if elt.Key.(*ast.Ident).Name != sel.Sel.Name { return } t, id, ok = getSelType(elt.Value) } if !ok { return } // All fields must be initialized from the same object if ident != nil && ident.Obj != id.Obj { return } typ2, _ = t.(*types.Named) if typ2 == nil { return } ident = id } if typ2 == nil { return } if typ1.Obj().Pkg() != typ2.Obj().Pkg() { // Do not suggest type conversions between different // packages. Types in different packages might only match // by coincidence. Furthermore, if the dependency ever // adds more fields to its type, it could break the code // that relies on the type conversion to work. return } s2, ok := typ2.Underlying().(*types.Struct) if !ok { return } if typ1 == typ2 { return } if IsGoVersion(j, 8) { if !types.IdenticalIgnoreTags(s1, s2) { return } } else { if !types.Identical(s1, s2) { return } } j.Errorf(node, "should convert %s (type %s) to %s instead of using struct literal", ident.Name, typ2.Obj().Name(), typ1.Obj().Name()) } j.Pkg.Inspector.Preorder([]ast.Node{(*ast.UnaryExpr)(nil), (*ast.CompositeLit)(nil)}, fn) } func (c *Checker) LintTrim(j *lint.Job) { sameNonDynamic := func(node1, node2 ast.Node) bool { if reflect.TypeOf(node1) != reflect.TypeOf(node2) { return false } switch node1 := node1.(type) { case *ast.Ident: return node1.Obj == node2.(*ast.Ident).Obj case *ast.SelectorExpr: return Render(j, node1) == Render(j, node2) case *ast.IndexExpr: return Render(j, node1) == Render(j, node2) } return false } isLenOnIdent := func(fn ast.Expr, ident ast.Expr) bool { call, ok := fn.(*ast.CallExpr) if !ok { return false } if fn, ok := call.Fun.(*ast.Ident); !ok || fn.Name != "len" { return false } if len(call.Args) != 1 { return false } return sameNonDynamic(call.Args[Arg("len.v")], ident) } fn := func(node ast.Node) { var pkg string var fun string ifstmt := node.(*ast.IfStmt) if ifstmt.Init != nil { return } if ifstmt.Else != nil { return } if len(ifstmt.Body.List) != 1 { return } condCall, ok := ifstmt.Cond.(*ast.CallExpr) if !ok { return } switch { case IsCallToAST(j, condCall, "strings.HasPrefix"): pkg = "strings" fun = "HasPrefix" case IsCallToAST(j, condCall, "strings.HasSuffix"): pkg = "strings" fun = "HasSuffix" case IsCallToAST(j, condCall, "strings.Contains"): pkg = "strings" fun = "Contains" case IsCallToAST(j, condCall, "bytes.HasPrefix"): pkg = "bytes" fun = "HasPrefix" case IsCallToAST(j, condCall, "bytes.HasSuffix"): pkg = "bytes" fun = "HasSuffix" case IsCallToAST(j, condCall, "bytes.Contains"): pkg = "bytes" fun = "Contains" default: return } assign, ok := ifstmt.Body.List[0].(*ast.AssignStmt) if !ok { return } if assign.Tok != token.ASSIGN { return } if len(assign.Lhs) != 1 || len(assign.Rhs) != 1 { return } if !sameNonDynamic(condCall.Args[0], assign.Lhs[0]) { return } switch rhs := assign.Rhs[0].(type) { case *ast.CallExpr: if len(rhs.Args) < 2 || !sameNonDynamic(condCall.Args[0], rhs.Args[0]) || !sameNonDynamic(condCall.Args[1], rhs.Args[1]) { return } if IsCallToAST(j, condCall, "strings.HasPrefix") && IsCallToAST(j, rhs, "strings.TrimPrefix") || IsCallToAST(j, condCall, "strings.HasSuffix") && IsCallToAST(j, rhs, "strings.TrimSuffix") || IsCallToAST(j, condCall, "strings.Contains") && IsCallToAST(j, rhs, "strings.Replace") || IsCallToAST(j, condCall, "bytes.HasPrefix") && IsCallToAST(j, rhs, "bytes.TrimPrefix") || IsCallToAST(j, condCall, "bytes.HasSuffix") && IsCallToAST(j, rhs, "bytes.TrimSuffix") || IsCallToAST(j, condCall, "bytes.Contains") && IsCallToAST(j, rhs, "bytes.Replace") { j.Errorf(ifstmt, "should replace this if statement with an unconditional %s", CallNameAST(j, rhs)) } return case *ast.SliceExpr: slice := rhs if !ok { return } if slice.Slice3 { return } if !sameNonDynamic(slice.X, condCall.Args[0]) { return } var index ast.Expr switch fun { case "HasPrefix": // TODO(dh) We could detect a High that is len(s), but another // rule will already flag that, anyway. if slice.High != nil { return } index = slice.Low case "HasSuffix": if slice.Low != nil { n, ok := ExprToInt(j, slice.Low) if !ok || n != 0 { return } } index = slice.High } switch index := index.(type) { case *ast.CallExpr: if fun != "HasPrefix" { return } if fn, ok := index.Fun.(*ast.Ident); !ok || fn.Name != "len" { return } if len(index.Args) != 1 { return } id3 := index.Args[Arg("len.v")] switch oid3 := condCall.Args[1].(type) { case *ast.BasicLit: if pkg != "strings" { return } lit, ok := id3.(*ast.BasicLit) if !ok { return } s1, ok1 := ExprToString(j, lit) s2, ok2 := ExprToString(j, condCall.Args[1]) if !ok1 || !ok2 || s1 != s2 { return } default: if !sameNonDynamic(id3, oid3) { return } } case *ast.BasicLit, *ast.Ident: if fun != "HasPrefix" { return } if pkg != "strings" { return } string, ok1 := ExprToString(j, condCall.Args[1]) int, ok2 := ExprToInt(j, slice.Low) if !ok1 || !ok2 || int != int64(len(string)) { return } case *ast.BinaryExpr: if fun != "HasSuffix" { return } if index.Op != token.SUB { return } if !isLenOnIdent(index.X, condCall.Args[0]) || !isLenOnIdent(index.Y, condCall.Args[1]) { return } default: return } var replacement string switch fun { case "HasPrefix": replacement = "TrimPrefix" case "HasSuffix": replacement = "TrimSuffix" } j.Errorf(ifstmt, "should replace this if statement with an unconditional %s.%s", pkg, replacement) } } j.Pkg.Inspector.Preorder([]ast.Node{(*ast.IfStmt)(nil)}, fn) } func (c *Checker) LintLoopSlide(j *lint.Job) { // TODO(dh): detect bs[i+offset] in addition to bs[offset+i] // TODO(dh): consider merging this function with LintLoopCopy // TODO(dh): detect length that is an expression, not a variable name // TODO(dh): support sliding to a different offset than the beginning of the slice fn := func(node ast.Node) { /* for i := 0; i < n; i++ { bs[i] = bs[offset+i] } ↓ copy(bs[:n], bs[offset:offset+n]) */ loop := node.(*ast.ForStmt) if len(loop.Body.List) != 1 || loop.Init == nil || loop.Cond == nil || loop.Post == nil { return } assign, ok := loop.Init.(*ast.AssignStmt) if !ok || len(assign.Lhs) != 1 || len(assign.Rhs) != 1 || !IsZero(assign.Rhs[0]) { return } initvar, ok := assign.Lhs[0].(*ast.Ident) if !ok { return } post, ok := loop.Post.(*ast.IncDecStmt) if !ok || post.Tok != token.INC { return } postvar, ok := post.X.(*ast.Ident) if !ok || j.Pkg.TypesInfo.ObjectOf(postvar) != j.Pkg.TypesInfo.ObjectOf(initvar) { return } bin, ok := loop.Cond.(*ast.BinaryExpr) if !ok || bin.Op != token.LSS { return } binx, ok := bin.X.(*ast.Ident) if !ok || j.Pkg.TypesInfo.ObjectOf(binx) != j.Pkg.TypesInfo.ObjectOf(initvar) { return } biny, ok := bin.Y.(*ast.Ident) if !ok { return } assign, ok = loop.Body.List[0].(*ast.AssignStmt) if !ok || len(assign.Lhs) != 1 || len(assign.Rhs) != 1 || assign.Tok != token.ASSIGN { return } lhs, ok := assign.Lhs[0].(*ast.IndexExpr) if !ok { return } rhs, ok := assign.Rhs[0].(*ast.IndexExpr) if !ok { return } bs1, ok := lhs.X.(*ast.Ident) if !ok { return } bs2, ok := rhs.X.(*ast.Ident) if !ok { return } obj1 := j.Pkg.TypesInfo.ObjectOf(bs1) obj2 := j.Pkg.TypesInfo.ObjectOf(bs2) if obj1 != obj2 { return } if _, ok := obj1.Type().Underlying().(*types.Slice); !ok { return } index1, ok := lhs.Index.(*ast.Ident) if !ok || j.Pkg.TypesInfo.ObjectOf(index1) != j.Pkg.TypesInfo.ObjectOf(initvar) { return } index2, ok := rhs.Index.(*ast.BinaryExpr) if !ok || index2.Op != token.ADD { return } add1, ok := index2.X.(*ast.Ident) if !ok { return } add2, ok := index2.Y.(*ast.Ident) if !ok || j.Pkg.TypesInfo.ObjectOf(add2) != j.Pkg.TypesInfo.ObjectOf(initvar) { return } j.Errorf(loop, "should use copy(%s[:%s], %s[%s:]) instead", Render(j, bs1), Render(j, biny), Render(j, bs1), Render(j, add1)) } j.Pkg.Inspector.Preorder([]ast.Node{(*ast.ForStmt)(nil)}, fn) } func (c *Checker) LintMakeLenCap(j *lint.Job) { fn := func(node ast.Node) { call := node.(*ast.CallExpr) if fn, ok := call.Fun.(*ast.Ident); !ok || fn.Name != "make" { // FIXME check whether make is indeed the built-in function return } switch len(call.Args) { case 2: // make(T, len) if _, ok := j.Pkg.TypesInfo.TypeOf(call.Args[Arg("make.t")]).Underlying().(*types.Slice); ok { break } if IsZero(call.Args[Arg("make.size[0]")]) { j.Errorf(call.Args[Arg("make.size[0]")], "should use make(%s) instead", Render(j, call.Args[Arg("make.t")])) } case 3: // make(T, len, cap) if Render(j, call.Args[Arg("make.size[0]")]) == Render(j, call.Args[Arg("make.size[1]")]) { j.Errorf(call.Args[Arg("make.size[0]")], "should use make(%s, %s) instead", Render(j, call.Args[Arg("make.t")]), Render(j, call.Args[Arg("make.size[0]")])) } } } j.Pkg.Inspector.Preorder([]ast.Node{(*ast.CallExpr)(nil)}, fn) } func (c *Checker) LintAssertNotNil(j *lint.Job) { isNilCheck := func(ident *ast.Ident, expr ast.Expr) bool { xbinop, ok := expr.(*ast.BinaryExpr) if !ok || xbinop.Op != token.NEQ { return false } xident, ok := xbinop.X.(*ast.Ident) if !ok || xident.Obj != ident.Obj { return false } if !IsNil(j, xbinop.Y) { return false } return true } isOKCheck := func(ident *ast.Ident, expr ast.Expr) bool { yident, ok := expr.(*ast.Ident) if !ok || yident.Obj != ident.Obj { return false } return true } fn1 := func(node ast.Node) { ifstmt := node.(*ast.IfStmt) assign, ok := ifstmt.Init.(*ast.AssignStmt) if !ok || len(assign.Lhs) != 2 || len(assign.Rhs) != 1 || !IsBlank(assign.Lhs[0]) { return } assert, ok := assign.Rhs[0].(*ast.TypeAssertExpr) if !ok { return } binop, ok := ifstmt.Cond.(*ast.BinaryExpr) if !ok || binop.Op != token.LAND { return } assertIdent, ok := assert.X.(*ast.Ident) if !ok { return } assignIdent, ok := assign.Lhs[1].(*ast.Ident) if !ok { return } if !(isNilCheck(assertIdent, binop.X) && isOKCheck(assignIdent, binop.Y)) && !(isNilCheck(assertIdent, binop.Y) && isOKCheck(assignIdent, binop.X)) { return } j.Errorf(ifstmt, "when %s is true, %s can't be nil", Render(j, assignIdent), Render(j, assertIdent)) } fn2 := func(node ast.Node) { // Check that outer ifstmt is an 'if x != nil {}' ifstmt := node.(*ast.IfStmt) if ifstmt.Init != nil { return } if ifstmt.Else != nil { return } if len(ifstmt.Body.List) != 1 { return } binop, ok := ifstmt.Cond.(*ast.BinaryExpr) if !ok { return } if binop.Op != token.NEQ { return } lhs, ok := binop.X.(*ast.Ident) if !ok { return } if !IsNil(j, binop.Y) { return } // Check that inner ifstmt is an `if _, ok := x.(T); ok {}` ifstmt, ok = ifstmt.Body.List[0].(*ast.IfStmt) if !ok { return } assign, ok := ifstmt.Init.(*ast.AssignStmt) if !ok || len(assign.Lhs) != 2 || len(assign.Rhs) != 1 || !IsBlank(assign.Lhs[0]) { return } assert, ok := assign.Rhs[0].(*ast.TypeAssertExpr) if !ok { return } assertIdent, ok := assert.X.(*ast.Ident) if !ok { return } if lhs.Obj != assertIdent.Obj { return } assignIdent, ok := assign.Lhs[1].(*ast.Ident) if !ok { return } if !isOKCheck(assignIdent, ifstmt.Cond) { return } j.Errorf(ifstmt, "when %s is true, %s can't be nil", Render(j, assignIdent), Render(j, assertIdent)) } j.Pkg.Inspector.Preorder([]ast.Node{(*ast.IfStmt)(nil)}, fn1) j.Pkg.Inspector.Preorder([]ast.Node{(*ast.IfStmt)(nil)}, fn2) } func (c *Checker) LintDeclareAssign(j *lint.Job) { hasMultipleAssignments := func(root ast.Node, ident *ast.Ident) bool { num := 0 ast.Inspect(root, func(node ast.Node) bool { if num >= 2 { return false } assign, ok := node.(*ast.AssignStmt) if !ok { return true } for _, lhs := range assign.Lhs { if oident, ok := lhs.(*ast.Ident); ok { if oident.Obj == ident.Obj { num++ } } } return true }) return num >= 2 } fn := func(node ast.Node) { block := node.(*ast.BlockStmt) if len(block.List) < 2 { return } for i, stmt := range block.List[:len(block.List)-1] { _ = i decl, ok := stmt.(*ast.DeclStmt) if !ok { continue } gdecl, ok := decl.Decl.(*ast.GenDecl) if !ok || gdecl.Tok != token.VAR || len(gdecl.Specs) != 1 { continue } vspec, ok := gdecl.Specs[0].(*ast.ValueSpec) if !ok || len(vspec.Names) != 1 || len(vspec.Values) != 0 { continue } assign, ok := block.List[i+1].(*ast.AssignStmt) if !ok || assign.Tok != token.ASSIGN { continue } if len(assign.Lhs) != 1 || len(assign.Rhs) != 1 { continue } ident, ok := assign.Lhs[0].(*ast.Ident) if !ok { continue } if vspec.Names[0].Obj != ident.Obj { continue } if refersTo(j, assign.Rhs[0], ident) { continue } if hasMultipleAssignments(block, ident) { continue } j.Errorf(decl, "should merge variable declaration with assignment on next line") } } j.Pkg.Inspector.Preorder([]ast.Node{(*ast.BlockStmt)(nil)}, fn) } func (c *Checker) LintRedundantBreak(j *lint.Job) { fn1 := func(node ast.Node) { clause := node.(*ast.CaseClause) if len(clause.Body) < 2 { return } branch, ok := clause.Body[len(clause.Body)-1].(*ast.BranchStmt) if !ok || branch.Tok != token.BREAK || branch.Label != nil { return } j.Errorf(branch, "redundant break statement") } fn2 := func(node ast.Node) { var ret *ast.FieldList var body *ast.BlockStmt switch x := node.(type) { case *ast.FuncDecl: ret = x.Type.Results body = x.Body case *ast.FuncLit: ret = x.Type.Results body = x.Body default: panic(fmt.Sprintf("unreachable: %T", node)) } // if the func has results, a return can't be redundant. // similarly, if there are no statements, there can be // no return. if ret != nil || body == nil || len(body.List) < 1 { return } rst, ok := body.List[len(body.List)-1].(*ast.ReturnStmt) if !ok { return } // we don't need to check rst.Results as we already // checked x.Type.Results to be nil. j.Errorf(rst, "redundant return statement") } j.Pkg.Inspector.Preorder([]ast.Node{(*ast.CaseClause)(nil)}, fn1) j.Pkg.Inspector.Preorder([]ast.Node{(*ast.FuncDecl)(nil), (*ast.FuncLit)(nil)}, fn2) } func isStringer(T types.Type) bool { ms := types.NewMethodSet(T) sel := ms.Lookup(nil, "String") if sel == nil { return false } fn, ok := sel.Obj().(*types.Func) if !ok { // should be unreachable return false } sig := fn.Type().(*types.Signature) if sig.Params().Len() != 0 { return false } if sig.Results().Len() != 1 { return false } if !IsType(sig.Results().At(0).Type(), "string") { return false } return true } func (c *Checker) LintRedundantSprintf(j *lint.Job) { fn := func(node ast.Node) { call := node.(*ast.CallExpr) if !IsCallToAST(j, call, "fmt.Sprintf") { return } if len(call.Args) != 2 { return } if s, ok := ExprToString(j, call.Args[Arg("fmt.Sprintf.format")]); !ok || s != "%s" { return } arg := call.Args[Arg("fmt.Sprintf.a[0]")] typ := j.Pkg.TypesInfo.TypeOf(arg) if isStringer(typ) { j.Errorf(call, "should use String() instead of fmt.Sprintf") return } if typ.Underlying() == types.Universe.Lookup("string").Type() { if typ == types.Universe.Lookup("string").Type() { j.Errorf(call, "the argument is already a string, there's no need to use fmt.Sprintf") } else { j.Errorf(call, "the argument's underlying type is a string, should use a simple conversion instead of fmt.Sprintf") } } } j.Pkg.Inspector.Preorder([]ast.Node{(*ast.CallExpr)(nil)}, fn) } func (c *Checker) LintErrorsNewSprintf(j *lint.Job) { fn := func(node ast.Node) { if !IsCallToAST(j, node, "errors.New") { return } call := node.(*ast.CallExpr) if !IsCallToAST(j, call.Args[Arg("errors.New.text")], "fmt.Sprintf") { return } j.Errorf(node, "should use fmt.Errorf(...) instead of errors.New(fmt.Sprintf(...))") } j.Pkg.Inspector.Preorder([]ast.Node{(*ast.CallExpr)(nil)}, fn) } func (c *Checker) LintRangeStringRunes(j *lint.Job) { sharedcheck.CheckRangeStringRunes(j) } func (c *Checker) LintNilCheckAroundRange(j *lint.Job) { fn := func(node ast.Node) { ifstmt := node.(*ast.IfStmt) cond, ok := ifstmt.Cond.(*ast.BinaryExpr) if !ok { return } if cond.Op != token.NEQ || !IsNil(j, cond.Y) || len(ifstmt.Body.List) != 1 { return } loop, ok := ifstmt.Body.List[0].(*ast.RangeStmt) if !ok { return } ifXIdent, ok := cond.X.(*ast.Ident) if !ok { return } rangeXIdent, ok := loop.X.(*ast.Ident) if !ok { return } if ifXIdent.Obj != rangeXIdent.Obj { return } switch j.Pkg.TypesInfo.TypeOf(rangeXIdent).(type) { case *types.Slice, *types.Map: j.Errorf(node, "unnecessary nil check around range") } } j.Pkg.Inspector.Preorder([]ast.Node{(*ast.IfStmt)(nil)}, fn) } func isPermissibleSort(j *lint.Job, node ast.Node) bool { call := node.(*ast.CallExpr) typeconv, ok := call.Args[0].(*ast.CallExpr) if !ok { return true } sel, ok := typeconv.Fun.(*ast.SelectorExpr) if !ok { return true } name := SelectorName(j, sel) switch name { case "sort.IntSlice", "sort.Float64Slice", "sort.StringSlice": default: return true } return false } func (c *Checker) LintSortHelpers(j *lint.Job) { fn := func(node ast.Node) { var body *ast.BlockStmt switch node := node.(type) { case *ast.FuncLit: body = node.Body case *ast.FuncDecl: body = node.Body default: panic(fmt.Sprintf("unreachable: %T", node)) } if body == nil { return } type Error struct { node lint.Positioner msg string } var errors []Error permissible := false fnSorts := func(node ast.Node) bool { if permissible { return false } if !IsCallToAST(j, node, "sort.Sort") { return true } if isPermissibleSort(j, node) { permissible = true return false } call := node.(*ast.CallExpr) typeconv := call.Args[Arg("sort.Sort.data")].(*ast.CallExpr) sel := typeconv.Fun.(*ast.SelectorExpr) name := SelectorName(j, sel) switch name { case "sort.IntSlice": errors = append(errors, Error{node, "should use sort.Ints(...) instead of sort.Sort(sort.IntSlice(...))"}) case "sort.Float64Slice": errors = append(errors, Error{node, "should use sort.Float64s(...) instead of sort.Sort(sort.Float64Slice(...))"}) case "sort.StringSlice": errors = append(errors, Error{node, "should use sort.Strings(...) instead of sort.Sort(sort.StringSlice(...))"}) } return true } ast.Inspect(body, fnSorts) if permissible { return } for _, err := range errors { j.Errorf(err.node, "%s", err.msg) } return } j.Pkg.Inspector.Preorder([]ast.Node{(*ast.FuncLit)(nil), (*ast.FuncDecl)(nil)}, fn) } func (c *Checker) LintGuardedDelete(j *lint.Job) { isCommaOkMapIndex := func(stmt ast.Stmt) (b *ast.Ident, m ast.Expr, key ast.Expr, ok bool) { // Has to be of the form `_, = [] assign, ok := stmt.(*ast.AssignStmt) if !ok { return nil, nil, nil, false } if len(assign.Lhs) != 2 || len(assign.Rhs) != 1 { return nil, nil, nil, false } if !IsBlank(assign.Lhs[0]) { return nil, nil, nil, false } ident, ok := assign.Lhs[1].(*ast.Ident) if !ok { return nil, nil, nil, false } index, ok := assign.Rhs[0].(*ast.IndexExpr) if !ok { return nil, nil, nil, false } if _, ok := j.Pkg.TypesInfo.TypeOf(index.X).(*types.Map); !ok { return nil, nil, nil, false } key = index.Index return ident, index.X, key, true } fn := func(node ast.Node) { stmt := node.(*ast.IfStmt) if len(stmt.Body.List) != 1 { return } if stmt.Else != nil { return } expr, ok := stmt.Body.List[0].(*ast.ExprStmt) if !ok { return } call, ok := expr.X.(*ast.CallExpr) if !ok { return } if !IsCallToAST(j, call, "delete") { return } b, m, key, ok := isCommaOkMapIndex(stmt.Init) if !ok { return } if cond, ok := stmt.Cond.(*ast.Ident); !ok || j.Pkg.TypesInfo.ObjectOf(cond) != j.Pkg.TypesInfo.ObjectOf(b) { return } if Render(j, call.Args[0]) != Render(j, m) || Render(j, call.Args[1]) != Render(j, key) { return } j.Errorf(stmt, "unnecessary guard around call to delete") } j.Pkg.Inspector.Preorder([]ast.Node{(*ast.IfStmt)(nil)}, fn) } func (c *Checker) LintSimplifyTypeSwitch(j *lint.Job) { fn := func(node ast.Node) { stmt := node.(*ast.TypeSwitchStmt) if stmt.Init != nil { // bailing out for now, can't anticipate how type switches with initializers are being used return } expr, ok := stmt.Assign.(*ast.ExprStmt) if !ok { // the user is in fact assigning the result return } assert := expr.X.(*ast.TypeAssertExpr) ident, ok := assert.X.(*ast.Ident) if !ok { return } x := j.Pkg.TypesInfo.ObjectOf(ident) var allOffenders []ast.Node for _, clause := range stmt.Body.List { clause := clause.(*ast.CaseClause) if len(clause.List) != 1 { continue } hasUnrelatedAssertion := false var offenders []ast.Node ast.Inspect(clause, func(node ast.Node) bool { assert2, ok := node.(*ast.TypeAssertExpr) if !ok { return true } ident, ok := assert2.X.(*ast.Ident) if !ok { hasUnrelatedAssertion = true return false } if j.Pkg.TypesInfo.ObjectOf(ident) != x { hasUnrelatedAssertion = true return false } if !types.Identical(j.Pkg.TypesInfo.TypeOf(clause.List[0]), j.Pkg.TypesInfo.TypeOf(assert2.Type)) { hasUnrelatedAssertion = true return false } offenders = append(offenders, assert2) return true }) if !hasUnrelatedAssertion { // don't flag cases that have other type assertions // unrelated to the one in the case clause. often // times, this is done for symmetry, when two // different values have to be asserted to the same // type. allOffenders = append(allOffenders, offenders...) } } if len(allOffenders) != 0 { at := "" for _, offender := range allOffenders { pos := lint.DisplayPosition(j.Pkg.Fset, offender.Pos()) at += "\n\t" + pos.String() } j.Errorf(expr, "assigning the result of this type assertion to a variable (switch %s := %s.(type)) could eliminate the following type assertions:%s", Render(j, ident), Render(j, ident), at) } } j.Pkg.Inspector.Preorder([]ast.Node{(*ast.TypeSwitchStmt)(nil)}, fn) }