// Package staticcheck contains a linter for Go source code. package staticcheck // import "honnef.co/go/tools/staticcheck" import ( "fmt" "go/ast" "go/constant" "go/token" "go/types" htmltemplate "html/template" "net/http" "reflect" "regexp" "regexp/syntax" "sort" "strconv" "strings" texttemplate "text/template" "unicode" . "honnef.co/go/tools/arg" "honnef.co/go/tools/deprecated" "honnef.co/go/tools/facts" "honnef.co/go/tools/functions" "honnef.co/go/tools/internal/passes/buildssa" "honnef.co/go/tools/internal/sharedcheck" "honnef.co/go/tools/lint" . "honnef.co/go/tools/lint/lintdsl" "honnef.co/go/tools/printf" "honnef.co/go/tools/ssa" "honnef.co/go/tools/ssautil" "honnef.co/go/tools/staticcheck/vrp" "golang.org/x/tools/go/analysis" "golang.org/x/tools/go/analysis/passes/inspect" "golang.org/x/tools/go/ast/astutil" "golang.org/x/tools/go/ast/inspector" "golang.org/x/tools/go/types/typeutil" ) func validRegexp(call *Call) { arg := call.Args[0] err := ValidateRegexp(arg.Value) if err != nil { arg.Invalid(err.Error()) } } type runeSlice []rune func (rs runeSlice) Len() int { return len(rs) } func (rs runeSlice) Less(i int, j int) bool { return rs[i] < rs[j] } func (rs runeSlice) Swap(i int, j int) { rs[i], rs[j] = rs[j], rs[i] } func utf8Cutset(call *Call) { arg := call.Args[1] if InvalidUTF8(arg.Value) { arg.Invalid(MsgInvalidUTF8) } } func uniqueCutset(call *Call) { arg := call.Args[1] if !UniqueStringCutset(arg.Value) { arg.Invalid(MsgNonUniqueCutset) } } func unmarshalPointer(name string, arg int) CallCheck { return func(call *Call) { if !Pointer(call.Args[arg].Value) { call.Args[arg].Invalid(fmt.Sprintf("%s expects to unmarshal into a pointer, but the provided value is not a pointer", name)) } } } func pointlessIntMath(call *Call) { if ConvertedFromInt(call.Args[0].Value) { call.Invalid(fmt.Sprintf("calling %s on a converted integer is pointless", CallName(call.Instr.Common()))) } } func checkValidHostPort(arg int) CallCheck { return func(call *Call) { if !ValidHostPort(call.Args[arg].Value) { call.Args[arg].Invalid(MsgInvalidHostPort) } } } var ( checkRegexpRules = map[string]CallCheck{ "regexp.MustCompile": validRegexp, "regexp.Compile": validRegexp, "regexp.Match": validRegexp, "regexp.MatchReader": validRegexp, "regexp.MatchString": validRegexp, } checkTimeParseRules = map[string]CallCheck{ "time.Parse": func(call *Call) { arg := call.Args[Arg("time.Parse.layout")] err := ValidateTimeLayout(arg.Value) if err != nil { arg.Invalid(err.Error()) } }, } checkEncodingBinaryRules = map[string]CallCheck{ "encoding/binary.Write": func(call *Call) { arg := call.Args[Arg("encoding/binary.Write.data")] if !CanBinaryMarshal(call.Pass, arg.Value) { arg.Invalid(fmt.Sprintf("value of type %s cannot be used with binary.Write", arg.Value.Value.Type())) } }, } checkURLsRules = map[string]CallCheck{ "net/url.Parse": func(call *Call) { arg := call.Args[Arg("net/url.Parse.rawurl")] err := ValidateURL(arg.Value) if err != nil { arg.Invalid(err.Error()) } }, } checkSyncPoolValueRules = map[string]CallCheck{ "(*sync.Pool).Put": func(call *Call) { arg := call.Args[Arg("(*sync.Pool).Put.x")] typ := arg.Value.Value.Type() if !IsPointerLike(typ) { arg.Invalid("argument should be pointer-like to avoid allocations") } }, } checkRegexpFindAllRules = map[string]CallCheck{ "(*regexp.Regexp).FindAll": RepeatZeroTimes("a FindAll method", 1), "(*regexp.Regexp).FindAllIndex": RepeatZeroTimes("a FindAll method", 1), "(*regexp.Regexp).FindAllString": RepeatZeroTimes("a FindAll method", 1), "(*regexp.Regexp).FindAllStringIndex": RepeatZeroTimes("a FindAll method", 1), "(*regexp.Regexp).FindAllStringSubmatch": RepeatZeroTimes("a FindAll method", 1), "(*regexp.Regexp).FindAllStringSubmatchIndex": RepeatZeroTimes("a FindAll method", 1), "(*regexp.Regexp).FindAllSubmatch": RepeatZeroTimes("a FindAll method", 1), "(*regexp.Regexp).FindAllSubmatchIndex": RepeatZeroTimes("a FindAll method", 1), } checkUTF8CutsetRules = map[string]CallCheck{ "strings.IndexAny": utf8Cutset, "strings.LastIndexAny": utf8Cutset, "strings.ContainsAny": utf8Cutset, "strings.Trim": utf8Cutset, "strings.TrimLeft": utf8Cutset, "strings.TrimRight": utf8Cutset, } checkUniqueCutsetRules = map[string]CallCheck{ "strings.Trim": uniqueCutset, "strings.TrimLeft": uniqueCutset, "strings.TrimRight": uniqueCutset, } checkUnmarshalPointerRules = map[string]CallCheck{ "encoding/xml.Unmarshal": unmarshalPointer("xml.Unmarshal", 1), "(*encoding/xml.Decoder).Decode": unmarshalPointer("Decode", 0), "(*encoding/xml.Decoder).DecodeElement": unmarshalPointer("DecodeElement", 0), "encoding/json.Unmarshal": unmarshalPointer("json.Unmarshal", 1), "(*encoding/json.Decoder).Decode": unmarshalPointer("Decode", 0), } checkUnbufferedSignalChanRules = map[string]CallCheck{ "os/signal.Notify": func(call *Call) { arg := call.Args[Arg("os/signal.Notify.c")] if UnbufferedChannel(arg.Value) { arg.Invalid("the channel used with signal.Notify should be buffered") } }, } checkMathIntRules = map[string]CallCheck{ "math.Ceil": pointlessIntMath, "math.Floor": pointlessIntMath, "math.IsNaN": pointlessIntMath, "math.Trunc": pointlessIntMath, "math.IsInf": pointlessIntMath, } checkStringsReplaceZeroRules = map[string]CallCheck{ "strings.Replace": RepeatZeroTimes("strings.Replace", 3), "bytes.Replace": RepeatZeroTimes("bytes.Replace", 3), } checkListenAddressRules = map[string]CallCheck{ "net/http.ListenAndServe": checkValidHostPort(0), "net/http.ListenAndServeTLS": checkValidHostPort(0), } checkBytesEqualIPRules = map[string]CallCheck{ "bytes.Equal": func(call *Call) { if ConvertedFrom(call.Args[Arg("bytes.Equal.a")].Value, "net.IP") && ConvertedFrom(call.Args[Arg("bytes.Equal.b")].Value, "net.IP") { call.Invalid("use net.IP.Equal to compare net.IPs, not bytes.Equal") } }, } checkRegexpMatchLoopRules = map[string]CallCheck{ "regexp.Match": loopedRegexp("regexp.Match"), "regexp.MatchReader": loopedRegexp("regexp.MatchReader"), "regexp.MatchString": loopedRegexp("regexp.MatchString"), } checkNoopMarshal = map[string]CallCheck{ // TODO(dh): should we really flag XML? Even an empty struct // produces a non-zero amount of data, namely its type name. // Let's see if we encounter any false positives. // // Also, should we flag gob? "encoding/json.Marshal": checkNoopMarshalImpl(Arg("json.Marshal.v"), "MarshalJSON", "MarshalText"), "encoding/xml.Marshal": checkNoopMarshalImpl(Arg("xml.Marshal.v"), "MarshalXML", "MarshalText"), "(*encoding/json.Encoder).Encode": checkNoopMarshalImpl(Arg("(*encoding/json.Encoder).Encode.v"), "MarshalJSON", "MarshalText"), "(*encoding/xml.Encoder).Encode": checkNoopMarshalImpl(Arg("(*encoding/xml.Encoder).Encode.v"), "MarshalXML", "MarshalText"), "encoding/json.Unmarshal": checkNoopMarshalImpl(Arg("json.Unmarshal.v"), "UnmarshalJSON", "UnmarshalText"), "encoding/xml.Unmarshal": checkNoopMarshalImpl(Arg("xml.Unmarshal.v"), "UnmarshalXML", "UnmarshalText"), "(*encoding/json.Decoder).Decode": checkNoopMarshalImpl(Arg("(*encoding/json.Decoder).Decode.v"), "UnmarshalJSON", "UnmarshalText"), "(*encoding/xml.Decoder).Decode": checkNoopMarshalImpl(Arg("(*encoding/xml.Decoder).Decode.v"), "UnmarshalXML", "UnmarshalText"), } checkUnsupportedMarshal = map[string]CallCheck{ "encoding/json.Marshal": checkUnsupportedMarshalImpl(Arg("json.Marshal.v"), "json", "MarshalJSON", "MarshalText"), "encoding/xml.Marshal": checkUnsupportedMarshalImpl(Arg("xml.Marshal.v"), "xml", "MarshalXML", "MarshalText"), "(*encoding/json.Encoder).Encode": checkUnsupportedMarshalImpl(Arg("(*encoding/json.Encoder).Encode.v"), "json", "MarshalJSON", "MarshalText"), "(*encoding/xml.Encoder).Encode": checkUnsupportedMarshalImpl(Arg("(*encoding/xml.Encoder).Encode.v"), "xml", "MarshalXML", "MarshalText"), } checkAtomicAlignment = map[string]CallCheck{ "sync/atomic.AddInt64": checkAtomicAlignmentImpl, "sync/atomic.AddUint64": checkAtomicAlignmentImpl, "sync/atomic.CompareAndSwapInt64": checkAtomicAlignmentImpl, "sync/atomic.CompareAndSwapUint64": checkAtomicAlignmentImpl, "sync/atomic.LoadInt64": checkAtomicAlignmentImpl, "sync/atomic.LoadUint64": checkAtomicAlignmentImpl, "sync/atomic.StoreInt64": checkAtomicAlignmentImpl, "sync/atomic.StoreUint64": checkAtomicAlignmentImpl, "sync/atomic.SwapInt64": checkAtomicAlignmentImpl, "sync/atomic.SwapUint64": checkAtomicAlignmentImpl, } // TODO(dh): detect printf wrappers checkPrintfRules = map[string]CallCheck{ "fmt.Errorf": func(call *Call) { checkPrintfCall(call, 0, 1) }, "fmt.Printf": func(call *Call) { checkPrintfCall(call, 0, 1) }, "fmt.Sprintf": func(call *Call) { checkPrintfCall(call, 0, 1) }, "fmt.Fprintf": func(call *Call) { checkPrintfCall(call, 1, 2) }, } ) func checkPrintfCall(call *Call, fIdx, vIdx int) { f := call.Args[fIdx] var args []ssa.Value switch v := call.Args[vIdx].Value.Value.(type) { case *ssa.Slice: var ok bool args, ok = ssautil.Vararg(v) if !ok { // We don't know what the actual arguments to the function are return } case *ssa.Const: // nil, i.e. no arguments default: // We don't know what the actual arguments to the function are return } checkPrintfCallImpl(call, f.Value.Value, args) } type verbFlag int const ( isInt verbFlag = 1 << iota isBool isFP isString isPointer isPseudoPointer isSlice isAny noRecurse ) var verbs = [...]verbFlag{ 'b': isPseudoPointer | isInt | isFP, 'c': isInt, 'd': isPseudoPointer | isInt, 'e': isFP, 'E': isFP, 'f': isFP, 'F': isFP, 'g': isFP, 'G': isFP, 'o': isPseudoPointer | isInt, 'p': isSlice | isPointer | noRecurse, 'q': isInt | isString, 's': isString, 't': isBool, 'T': isAny, 'U': isInt, 'v': isAny, 'X': isPseudoPointer | isInt | isString, 'x': isPseudoPointer | isInt | isString, } func checkPrintfCallImpl(call *Call, f ssa.Value, args []ssa.Value) { var msCache *typeutil.MethodSetCache if f.Parent() != nil { msCache = &f.Parent().Prog.MethodSets } elem := func(T types.Type, verb rune) ([]types.Type, bool) { if verbs[verb]&noRecurse != 0 { return []types.Type{T}, false } switch T := T.(type) { case *types.Slice: if verbs[verb]&isSlice != 0 { return []types.Type{T}, false } if verbs[verb]&isString != 0 && IsType(T.Elem().Underlying(), "byte") { return []types.Type{T}, false } return []types.Type{T.Elem()}, true case *types.Map: key := T.Key() val := T.Elem() return []types.Type{key, val}, true case *types.Struct: out := make([]types.Type, 0, T.NumFields()) for i := 0; i < T.NumFields(); i++ { out = append(out, T.Field(i).Type()) } return out, true case *types.Array: return []types.Type{T.Elem()}, true default: return []types.Type{T}, false } } isInfo := func(T types.Type, info types.BasicInfo) bool { basic, ok := T.Underlying().(*types.Basic) return ok && basic.Info()&info != 0 } isStringer := func(T types.Type, ms *types.MethodSet) bool { sel := ms.Lookup(nil, "String") if sel == nil { return false } fn, ok := sel.Obj().(*types.Func) if !ok { // should be unreachable return false } sig := fn.Type().(*types.Signature) if sig.Params().Len() != 0 { return false } if sig.Results().Len() != 1 { return false } if !IsType(sig.Results().At(0).Type(), "string") { return false } return true } isError := func(T types.Type, ms *types.MethodSet) bool { sel := ms.Lookup(nil, "Error") if sel == nil { return false } fn, ok := sel.Obj().(*types.Func) if !ok { // should be unreachable return false } sig := fn.Type().(*types.Signature) if sig.Params().Len() != 0 { return false } if sig.Results().Len() != 1 { return false } if !IsType(sig.Results().At(0).Type(), "string") { return false } return true } isFormatter := func(T types.Type, ms *types.MethodSet) bool { sel := ms.Lookup(nil, "Format") if sel == nil { return false } fn, ok := sel.Obj().(*types.Func) if !ok { // should be unreachable return false } sig := fn.Type().(*types.Signature) if sig.Params().Len() != 2 { return false } // TODO(dh): check the types of the arguments for more // precision if sig.Results().Len() != 0 { return false } return true } seen := map[types.Type]bool{} var checkType func(verb rune, T types.Type, top bool) bool checkType = func(verb rune, T types.Type, top bool) bool { if top { for k := range seen { delete(seen, k) } } if seen[T] { return true } seen[T] = true if int(verb) >= len(verbs) { // Unknown verb return true } flags := verbs[verb] if flags == 0 { // Unknown verb return true } ms := msCache.MethodSet(T) if isFormatter(T, ms) { // the value is responsible for formatting itself return true } if flags&isString != 0 && (isStringer(T, ms) || isError(T, ms)) { // Check for stringer early because we're about to dereference return true } T = T.Underlying() if flags&(isPointer|isPseudoPointer) == 0 && top { T = Dereference(T) } if flags&isPseudoPointer != 0 && top { t := Dereference(T) if _, ok := t.Underlying().(*types.Struct); ok { T = t } } if _, ok := T.(*types.Interface); ok { // We don't know what's in the interface return true } var info types.BasicInfo if flags&isInt != 0 { info |= types.IsInteger } if flags&isBool != 0 { info |= types.IsBoolean } if flags&isFP != 0 { info |= types.IsFloat | types.IsComplex } if flags&isString != 0 { info |= types.IsString } if info != 0 && isInfo(T, info) { return true } if flags&isString != 0 && (IsType(T, "[]byte") || isStringer(T, ms) || isError(T, ms)) { return true } if flags&isPointer != 0 && IsPointerLike(T) { return true } if flags&isPseudoPointer != 0 { switch U := T.Underlying().(type) { case *types.Pointer: if !top { return true } if _, ok := U.Elem().Underlying().(*types.Struct); !ok { return true } case *types.Chan, *types.Signature: return true } } if flags&isSlice != 0 { if _, ok := T.(*types.Slice); ok { return true } } if flags&isAny != 0 { return true } elems, ok := elem(T.Underlying(), verb) if !ok { return false } for _, elem := range elems { if !checkType(verb, elem, false) { return false } } return true } k, ok := f.(*ssa.Const) if !ok { return } actions, err := printf.Parse(constant.StringVal(k.Value)) if err != nil { call.Invalid("couldn't parse format string") return } ptr := 1 hasExplicit := false checkStar := func(verb printf.Verb, star printf.Argument) bool { if star, ok := star.(printf.Star); ok { idx := 0 if star.Index == -1 { idx = ptr ptr++ } else { hasExplicit = true idx = star.Index ptr = star.Index + 1 } if idx == 0 { call.Invalid(fmt.Sprintf("Printf format %s reads invalid arg 0; indices are 1-based", verb.Raw)) return false } if idx > len(args) { call.Invalid( fmt.Sprintf("Printf format %s reads arg #%d, but call has only %d args", verb.Raw, idx, len(args))) return false } if arg, ok := args[idx-1].(*ssa.MakeInterface); ok { if !isInfo(arg.X.Type(), types.IsInteger) { call.Invalid(fmt.Sprintf("Printf format %s reads non-int arg #%d as argument of *", verb.Raw, idx)) } } } return true } // We only report one problem per format string. Making a // mistake with an index tends to invalidate all future // implicit indices. for _, action := range actions { verb, ok := action.(printf.Verb) if !ok { continue } if !checkStar(verb, verb.Width) || !checkStar(verb, verb.Precision) { return } off := ptr if verb.Value != -1 { hasExplicit = true off = verb.Value } if off > len(args) { call.Invalid( fmt.Sprintf("Printf format %s reads arg #%d, but call has only %d args", verb.Raw, off, len(args))) return } else if verb.Value == 0 && verb.Letter != '%' { call.Invalid(fmt.Sprintf("Printf format %s reads invalid arg 0; indices are 1-based", verb.Raw)) return } else if off != 0 { arg, ok := args[off-1].(*ssa.MakeInterface) if ok { if !checkType(verb.Letter, arg.X.Type(), true) { call.Invalid(fmt.Sprintf("Printf format %s has arg #%d of wrong type %s", verb.Raw, ptr, args[ptr-1].(*ssa.MakeInterface).X.Type())) return } } } switch verb.Value { case -1: // Consume next argument ptr++ case 0: // Don't consume any arguments default: ptr = verb.Value + 1 } } if !hasExplicit && ptr <= len(args) { call.Invalid(fmt.Sprintf("Printf call needs %d args but has %d args", ptr-1, len(args))) } } func checkAtomicAlignmentImpl(call *Call) { sizes := call.Pass.TypesSizes if sizes.Sizeof(types.Typ[types.Uintptr]) != 4 { // Not running on a 32-bit platform return } v, ok := call.Args[0].Value.Value.(*ssa.FieldAddr) if !ok { // TODO(dh): also check indexing into arrays and slices return } T := v.X.Type().Underlying().(*types.Pointer).Elem().Underlying().(*types.Struct) fields := make([]*types.Var, 0, T.NumFields()) for i := 0; i < T.NumFields() && i <= v.Field; i++ { fields = append(fields, T.Field(i)) } off := sizes.Offsetsof(fields)[v.Field] if off%8 != 0 { msg := fmt.Sprintf("address of non 64-bit aligned field %s passed to %s", T.Field(v.Field).Name(), CallName(call.Instr.Common())) call.Invalid(msg) } } func checkNoopMarshalImpl(argN int, meths ...string) CallCheck { return func(call *Call) { if IsGenerated(call.Pass, call.Instr.Pos()) { return } arg := call.Args[argN] T := arg.Value.Value.Type() Ts, ok := Dereference(T).Underlying().(*types.Struct) if !ok { return } if Ts.NumFields() == 0 { return } fields := FlattenFields(Ts) for _, field := range fields { if field.Var.Exported() { return } } // OPT(dh): we could use a method set cache here ms := call.Instr.Parent().Prog.MethodSets.MethodSet(T) // TODO(dh): we're not checking the signature, which can cause false negatives. // This isn't a huge problem, however, since vet complains about incorrect signatures. for _, meth := range meths { if ms.Lookup(nil, meth) != nil { return } } arg.Invalid("struct doesn't have any exported fields, nor custom marshaling") } } func checkUnsupportedMarshalImpl(argN int, tag string, meths ...string) CallCheck { // TODO(dh): flag slices and maps of unsupported types return func(call *Call) { msCache := &call.Instr.Parent().Prog.MethodSets arg := call.Args[argN] T := arg.Value.Value.Type() Ts, ok := Dereference(T).Underlying().(*types.Struct) if !ok { return } ms := msCache.MethodSet(T) // TODO(dh): we're not checking the signature, which can cause false negatives. // This isn't a huge problem, however, since vet complains about incorrect signatures. for _, meth := range meths { if ms.Lookup(nil, meth) != nil { return } } fields := FlattenFields(Ts) for _, field := range fields { if !(field.Var.Exported()) { continue } if reflect.StructTag(field.Tag).Get(tag) == "-" { continue } ms := msCache.MethodSet(field.Var.Type()) // TODO(dh): we're not checking the signature, which can cause false negatives. // This isn't a huge problem, however, since vet complains about incorrect signatures. for _, meth := range meths { if ms.Lookup(nil, meth) != nil { return } } switch field.Var.Type().Underlying().(type) { case *types.Chan, *types.Signature: arg.Invalid(fmt.Sprintf("trying to marshal chan or func value, field %s", fieldPath(T, field.Path))) } } } } func fieldPath(start types.Type, indices []int) string { p := start.String() for _, idx := range indices { field := Dereference(start).Underlying().(*types.Struct).Field(idx) start = field.Type() p += "." + field.Name() } return p } func isInLoop(b *ssa.BasicBlock) bool { sets := functions.FindLoops(b.Parent()) for _, set := range sets { if set.Has(b) { return true } } return false } func CheckUntrappableSignal(pass *analysis.Pass) (interface{}, error) { fn := func(node ast.Node) { call := node.(*ast.CallExpr) if !IsCallToAnyAST(pass, call, "os/signal.Ignore", "os/signal.Notify", "os/signal.Reset") { return } for _, arg := range call.Args { if conv, ok := arg.(*ast.CallExpr); ok && isName(pass, conv.Fun, "os.Signal") { arg = conv.Args[0] } if isName(pass, arg, "os.Kill") || isName(pass, arg, "syscall.SIGKILL") { ReportNodef(pass, arg, "%s cannot be trapped (did you mean syscall.SIGTERM?)", Render(pass, arg)) } if isName(pass, arg, "syscall.SIGSTOP") { ReportNodef(pass, arg, "%s signal cannot be trapped", Render(pass, arg)) } } } pass.ResultOf[inspect.Analyzer].(*inspector.Inspector).Preorder([]ast.Node{(*ast.CallExpr)(nil)}, fn) return nil, nil } func CheckTemplate(pass *analysis.Pass) (interface{}, error) { fn := func(node ast.Node) { call := node.(*ast.CallExpr) var kind string if IsCallToAST(pass, call, "(*text/template.Template).Parse") { kind = "text" } else if IsCallToAST(pass, call, "(*html/template.Template).Parse") { kind = "html" } else { return } sel := call.Fun.(*ast.SelectorExpr) if !IsCallToAST(pass, sel.X, "text/template.New") && !IsCallToAST(pass, sel.X, "html/template.New") { // TODO(dh): this is a cheap workaround for templates with // different delims. A better solution with less false // negatives would use data flow analysis to see where the // template comes from and where it has been return } s, ok := ExprToString(pass, call.Args[Arg("(*text/template.Template).Parse.text")]) if !ok { return } var err error switch kind { case "text": _, err = texttemplate.New("").Parse(s) case "html": _, err = htmltemplate.New("").Parse(s) } if err != nil { // TODO(dominikh): whitelist other parse errors, if any if strings.Contains(err.Error(), "unexpected") { ReportNodef(pass, call.Args[Arg("(*text/template.Template).Parse.text")], "%s", err) } } } pass.ResultOf[inspect.Analyzer].(*inspector.Inspector).Preorder([]ast.Node{(*ast.CallExpr)(nil)}, fn) return nil, nil } func CheckTimeSleepConstant(pass *analysis.Pass) (interface{}, error) { fn := func(node ast.Node) { call := node.(*ast.CallExpr) if !IsCallToAST(pass, call, "time.Sleep") { return } lit, ok := call.Args[Arg("time.Sleep.d")].(*ast.BasicLit) if !ok { return } n, err := strconv.Atoi(lit.Value) if err != nil { return } if n == 0 || n > 120 { // time.Sleep(0) is a seldom used pattern in concurrency // tests. >120 might be intentional. 120 was chosen // because the user could've meant 2 minutes. return } recommendation := "time.Sleep(time.Nanosecond)" if n != 1 { recommendation = fmt.Sprintf("time.Sleep(%d * time.Nanosecond)", n) } ReportNodef(pass, call.Args[Arg("time.Sleep.d")], "sleeping for %d nanoseconds is probably a bug. Be explicit if it isn't: %s", n, recommendation) } pass.ResultOf[inspect.Analyzer].(*inspector.Inspector).Preorder([]ast.Node{(*ast.CallExpr)(nil)}, fn) return nil, nil } func CheckWaitgroupAdd(pass *analysis.Pass) (interface{}, error) { fn := func(node ast.Node) { g := node.(*ast.GoStmt) fun, ok := g.Call.Fun.(*ast.FuncLit) if !ok { return } if len(fun.Body.List) == 0 { return } stmt, ok := fun.Body.List[0].(*ast.ExprStmt) if !ok { return } if IsCallToAST(pass, stmt.X, "(*sync.WaitGroup).Add") { ReportNodef(pass, stmt, "should call %s before starting the goroutine to avoid a race", Render(pass, stmt)) } } pass.ResultOf[inspect.Analyzer].(*inspector.Inspector).Preorder([]ast.Node{(*ast.GoStmt)(nil)}, fn) return nil, nil } func CheckInfiniteEmptyLoop(pass *analysis.Pass) (interface{}, error) { fn := func(node ast.Node) { loop := node.(*ast.ForStmt) if len(loop.Body.List) != 0 || loop.Post != nil { return } if loop.Init != nil { // TODO(dh): this isn't strictly necessary, it just makes // the check easier. return } // An empty loop is bad news in two cases: 1) The loop has no // condition. In that case, it's just a loop that spins // forever and as fast as it can, keeping a core busy. 2) The // loop condition only consists of variable or field reads and // operators on those. The only way those could change their // value is with unsynchronised access, which constitutes a // data race. // // If the condition contains any function calls, its behaviour // is dynamic and the loop might terminate. Similarly for // channel receives. if loop.Cond != nil { if hasSideEffects(loop.Cond) { return } if ident, ok := loop.Cond.(*ast.Ident); ok { if k, ok := pass.TypesInfo.ObjectOf(ident).(*types.Const); ok { if !constant.BoolVal(k.Val()) { // don't flag `for false {}` loops. They're a debug aid. return } } } ReportNodef(pass, loop, "loop condition never changes or has a race condition") } ReportNodef(pass, loop, "this loop will spin, using 100%% CPU") } pass.ResultOf[inspect.Analyzer].(*inspector.Inspector).Preorder([]ast.Node{(*ast.ForStmt)(nil)}, fn) return nil, nil } func CheckDeferInInfiniteLoop(pass *analysis.Pass) (interface{}, error) { fn := func(node ast.Node) { mightExit := false var defers []ast.Stmt loop := node.(*ast.ForStmt) if loop.Cond != nil { return } fn2 := func(node ast.Node) bool { switch stmt := node.(type) { case *ast.ReturnStmt: mightExit = true return false case *ast.BranchStmt: // TODO(dominikh): if this sees a break in a switch or // select, it doesn't check if it breaks the loop or // just the select/switch. This causes some false // negatives. if stmt.Tok == token.BREAK { mightExit = true return false } case *ast.DeferStmt: defers = append(defers, stmt) case *ast.FuncLit: // Don't look into function bodies return false } return true } ast.Inspect(loop.Body, fn2) if mightExit { return } for _, stmt := range defers { ReportNodef(pass, stmt, "defers in this infinite loop will never run") } } pass.ResultOf[inspect.Analyzer].(*inspector.Inspector).Preorder([]ast.Node{(*ast.ForStmt)(nil)}, fn) return nil, nil } func CheckDubiousDeferInChannelRangeLoop(pass *analysis.Pass) (interface{}, error) { fn := func(node ast.Node) { loop := node.(*ast.RangeStmt) typ := pass.TypesInfo.TypeOf(loop.X) _, ok := typ.Underlying().(*types.Chan) if !ok { return } fn2 := func(node ast.Node) bool { switch stmt := node.(type) { case *ast.DeferStmt: ReportNodef(pass, stmt, "defers in this range loop won't run unless the channel gets closed") case *ast.FuncLit: // Don't look into function bodies return false } return true } ast.Inspect(loop.Body, fn2) } pass.ResultOf[inspect.Analyzer].(*inspector.Inspector).Preorder([]ast.Node{(*ast.RangeStmt)(nil)}, fn) return nil, nil } func CheckTestMainExit(pass *analysis.Pass) (interface{}, error) { var ( fnmain ast.Node callsExit bool callsRun bool arg types.Object ) fn := func(node ast.Node, push bool) bool { if !push { if fnmain != nil && node == fnmain { if !callsExit && callsRun { ReportNodef(pass, fnmain, "TestMain should call os.Exit to set exit code") } fnmain = nil callsExit = false callsRun = false arg = nil } return true } switch node := node.(type) { case *ast.FuncDecl: if fnmain != nil { return true } if !isTestMain(pass, node) { return false } fnmain = node arg = pass.TypesInfo.ObjectOf(node.Type.Params.List[0].Names[0]) return true case *ast.CallExpr: if IsCallToAST(pass, node, "os.Exit") { callsExit = true return false } sel, ok := node.Fun.(*ast.SelectorExpr) if !ok { return true } ident, ok := sel.X.(*ast.Ident) if !ok { return true } if arg != pass.TypesInfo.ObjectOf(ident) { return true } if sel.Sel.Name == "Run" { callsRun = true return false } return true default: // unreachable return true } } pass.ResultOf[inspect.Analyzer].(*inspector.Inspector).Nodes([]ast.Node{(*ast.FuncDecl)(nil), (*ast.CallExpr)(nil)}, fn) return nil, nil } func isTestMain(pass *analysis.Pass, decl *ast.FuncDecl) bool { if decl.Name.Name != "TestMain" { return false } if len(decl.Type.Params.List) != 1 { return false } arg := decl.Type.Params.List[0] if len(arg.Names) != 1 { return false } return IsOfType(pass, arg.Type, "*testing.M") } func CheckExec(pass *analysis.Pass) (interface{}, error) { fn := func(node ast.Node) { call := node.(*ast.CallExpr) if !IsCallToAST(pass, call, "os/exec.Command") { return } val, ok := ExprToString(pass, call.Args[Arg("os/exec.Command.name")]) if !ok { return } if !strings.Contains(val, " ") || strings.Contains(val, `\`) || strings.Contains(val, "/") { return } ReportNodef(pass, call.Args[Arg("os/exec.Command.name")], "first argument to exec.Command looks like a shell command, but a program name or path are expected") } pass.ResultOf[inspect.Analyzer].(*inspector.Inspector).Preorder([]ast.Node{(*ast.CallExpr)(nil)}, fn) return nil, nil } func CheckLoopEmptyDefault(pass *analysis.Pass) (interface{}, error) { fn := func(node ast.Node) { loop := node.(*ast.ForStmt) if len(loop.Body.List) != 1 || loop.Cond != nil || loop.Init != nil { return } sel, ok := loop.Body.List[0].(*ast.SelectStmt) if !ok { return } for _, c := range sel.Body.List { if comm, ok := c.(*ast.CommClause); ok && comm.Comm == nil && len(comm.Body) == 0 { ReportNodef(pass, comm, "should not have an empty default case in a for+select loop. The loop will spin.") } } } pass.ResultOf[inspect.Analyzer].(*inspector.Inspector).Preorder([]ast.Node{(*ast.ForStmt)(nil)}, fn) return nil, nil } func CheckLhsRhsIdentical(pass *analysis.Pass) (interface{}, error) { fn := func(node ast.Node) { op := node.(*ast.BinaryExpr) switch op.Op { case token.EQL, token.NEQ: if basic, ok := pass.TypesInfo.TypeOf(op.X).Underlying().(*types.Basic); ok { if kind := basic.Kind(); kind == types.Float32 || kind == types.Float64 { // f == f and f != f might be used to check for NaN return } } case token.SUB, token.QUO, token.AND, token.REM, token.OR, token.XOR, token.AND_NOT, token.LAND, token.LOR, token.LSS, token.GTR, token.LEQ, token.GEQ: default: // For some ops, such as + and *, it can make sense to // have identical operands return } if Render(pass, op.X) != Render(pass, op.Y) { return } l1, ok1 := op.X.(*ast.BasicLit) l2, ok2 := op.Y.(*ast.BasicLit) if ok1 && ok2 && l1.Kind == token.INT && l2.Kind == l1.Kind && l1.Value == "0" && l2.Value == l1.Value && IsGenerated(pass, l1.Pos()) { // cgo generates the following function call: // _cgoCheckPointer(_cgoBase0, 0 == 0) – it uses 0 == 0 // instead of true in case the user shadowed the // identifier. Ideally we'd restrict this exception to // calls of _cgoCheckPointer, but it's not worth the // hassle of keeping track of the stack. // are very rare to begin with, and we're mostly checking // for them to catch typos such as 1 == 1 where the user // meant to type i == 1. The odds of a false negative for // 0 == 0 are slim. return } ReportNodef(pass, op, "identical expressions on the left and right side of the '%s' operator", op.Op) } pass.ResultOf[inspect.Analyzer].(*inspector.Inspector).Preorder([]ast.Node{(*ast.BinaryExpr)(nil)}, fn) return nil, nil } func CheckScopedBreak(pass *analysis.Pass) (interface{}, error) { fn := func(node ast.Node) { var body *ast.BlockStmt switch node := node.(type) { case *ast.ForStmt: body = node.Body case *ast.RangeStmt: body = node.Body default: panic(fmt.Sprintf("unreachable: %T", node)) } for _, stmt := range body.List { var blocks [][]ast.Stmt switch stmt := stmt.(type) { case *ast.SwitchStmt: for _, c := range stmt.Body.List { blocks = append(blocks, c.(*ast.CaseClause).Body) } case *ast.SelectStmt: for _, c := range stmt.Body.List { blocks = append(blocks, c.(*ast.CommClause).Body) } default: continue } for _, body := range blocks { if len(body) == 0 { continue } lasts := []ast.Stmt{body[len(body)-1]} // TODO(dh): unfold all levels of nested block // statements, not just a single level if statement if ifs, ok := lasts[0].(*ast.IfStmt); ok { if len(ifs.Body.List) == 0 { continue } lasts[0] = ifs.Body.List[len(ifs.Body.List)-1] if block, ok := ifs.Else.(*ast.BlockStmt); ok { if len(block.List) != 0 { lasts = append(lasts, block.List[len(block.List)-1]) } } } for _, last := range lasts { branch, ok := last.(*ast.BranchStmt) if !ok || branch.Tok != token.BREAK || branch.Label != nil { continue } ReportNodef(pass, branch, "ineffective break statement. Did you mean to break out of the outer loop?") } } } } pass.ResultOf[inspect.Analyzer].(*inspector.Inspector).Preorder([]ast.Node{(*ast.ForStmt)(nil), (*ast.RangeStmt)(nil)}, fn) return nil, nil } func CheckUnsafePrintf(pass *analysis.Pass) (interface{}, error) { fn := func(node ast.Node) { call := node.(*ast.CallExpr) var arg int if IsCallToAnyAST(pass, call, "fmt.Printf", "fmt.Sprintf", "log.Printf") { arg = Arg("fmt.Printf.format") } else if IsCallToAnyAST(pass, call, "fmt.Fprintf") { arg = Arg("fmt.Fprintf.format") } else { return } if len(call.Args) != arg+1 { return } switch call.Args[arg].(type) { case *ast.CallExpr, *ast.Ident: default: return } ReportNodef(pass, call.Args[arg], "printf-style function with dynamic format string and no further arguments should use print-style function instead") } pass.ResultOf[inspect.Analyzer].(*inspector.Inspector).Preorder([]ast.Node{(*ast.CallExpr)(nil)}, fn) return nil, nil } func CheckEarlyDefer(pass *analysis.Pass) (interface{}, error) { fn := func(node ast.Node) { block := node.(*ast.BlockStmt) if len(block.List) < 2 { return } for i, stmt := range block.List { if i == len(block.List)-1 { break } assign, ok := stmt.(*ast.AssignStmt) if !ok { continue } if len(assign.Rhs) != 1 { continue } if len(assign.Lhs) < 2 { continue } if lhs, ok := assign.Lhs[len(assign.Lhs)-1].(*ast.Ident); ok && lhs.Name == "_" { continue } call, ok := assign.Rhs[0].(*ast.CallExpr) if !ok { continue } sig, ok := pass.TypesInfo.TypeOf(call.Fun).(*types.Signature) if !ok { continue } if sig.Results().Len() < 2 { continue } last := sig.Results().At(sig.Results().Len() - 1) // FIXME(dh): check that it's error from universe, not // another type of the same name if last.Type().String() != "error" { continue } lhs, ok := assign.Lhs[0].(*ast.Ident) if !ok { continue } def, ok := block.List[i+1].(*ast.DeferStmt) if !ok { continue } sel, ok := def.Call.Fun.(*ast.SelectorExpr) if !ok { continue } ident, ok := selectorX(sel).(*ast.Ident) if !ok { continue } if ident.Obj != lhs.Obj { continue } if sel.Sel.Name != "Close" { continue } ReportNodef(pass, def, "should check returned error before deferring %s", Render(pass, def.Call)) } } pass.ResultOf[inspect.Analyzer].(*inspector.Inspector).Preorder([]ast.Node{(*ast.BlockStmt)(nil)}, fn) return nil, nil } func selectorX(sel *ast.SelectorExpr) ast.Node { switch x := sel.X.(type) { case *ast.SelectorExpr: return selectorX(x) default: return x } } func CheckEmptyCriticalSection(pass *analysis.Pass) (interface{}, error) { // Initially it might seem like this check would be easier to // implement in SSA. After all, we're only checking for two // consecutive method calls. In reality, however, there may be any // number of other instructions between the lock and unlock, while // still constituting an empty critical section. For example, // given `m.x().Lock(); m.x().Unlock()`, there will be a call to // x(). In the AST-based approach, this has a tiny potential for a // false positive (the second call to x might be doing work that // is protected by the mutex). In an SSA-based approach, however, // it would miss a lot of real bugs. mutexParams := func(s ast.Stmt) (x ast.Expr, funcName string, ok bool) { expr, ok := s.(*ast.ExprStmt) if !ok { return nil, "", false } call, ok := expr.X.(*ast.CallExpr) if !ok { return nil, "", false } sel, ok := call.Fun.(*ast.SelectorExpr) if !ok { return nil, "", false } fn, ok := pass.TypesInfo.ObjectOf(sel.Sel).(*types.Func) if !ok { return nil, "", false } sig := fn.Type().(*types.Signature) if sig.Params().Len() != 0 || sig.Results().Len() != 0 { return nil, "", false } return sel.X, fn.Name(), true } fn := func(node ast.Node) { block := node.(*ast.BlockStmt) if len(block.List) < 2 { return } for i := range block.List[:len(block.List)-1] { sel1, method1, ok1 := mutexParams(block.List[i]) sel2, method2, ok2 := mutexParams(block.List[i+1]) if !ok1 || !ok2 || Render(pass, sel1) != Render(pass, sel2) { continue } if (method1 == "Lock" && method2 == "Unlock") || (method1 == "RLock" && method2 == "RUnlock") { ReportNodef(pass, block.List[i+1], "empty critical section") } } } pass.ResultOf[inspect.Analyzer].(*inspector.Inspector).Preorder([]ast.Node{(*ast.BlockStmt)(nil)}, fn) return nil, nil } // cgo produces code like fn(&*_Cvar_kSomeCallbacks) which we don't // want to flag. var cgoIdent = regexp.MustCompile(`^_C(func|var)_.+$`) func CheckIneffectiveCopy(pass *analysis.Pass) (interface{}, error) { fn := func(node ast.Node) { if unary, ok := node.(*ast.UnaryExpr); ok { if star, ok := unary.X.(*ast.StarExpr); ok && unary.Op == token.AND { ident, ok := star.X.(*ast.Ident) if !ok || !cgoIdent.MatchString(ident.Name) { ReportNodef(pass, unary, "&*x will be simplified to x. It will not copy x.") } } } if star, ok := node.(*ast.StarExpr); ok { if unary, ok := star.X.(*ast.UnaryExpr); ok && unary.Op == token.AND { ReportNodef(pass, star, "*&x will be simplified to x. It will not copy x.") } } } pass.ResultOf[inspect.Analyzer].(*inspector.Inspector).Preorder([]ast.Node{(*ast.UnaryExpr)(nil), (*ast.StarExpr)(nil)}, fn) return nil, nil } func CheckDiffSizeComparison(pass *analysis.Pass) (interface{}, error) { ranges := pass.ResultOf[valueRangesAnalyzer].(map[*ssa.Function]vrp.Ranges) for _, ssafn := range pass.ResultOf[buildssa.Analyzer].(*buildssa.SSA).SrcFuncs { for _, b := range ssafn.Blocks { for _, ins := range b.Instrs { binop, ok := ins.(*ssa.BinOp) if !ok { continue } if binop.Op != token.EQL && binop.Op != token.NEQ { continue } _, ok1 := binop.X.(*ssa.Slice) _, ok2 := binop.Y.(*ssa.Slice) if !ok1 && !ok2 { continue } r := ranges[ssafn] r1, ok1 := r.Get(binop.X).(vrp.StringInterval) r2, ok2 := r.Get(binop.Y).(vrp.StringInterval) if !ok1 || !ok2 { continue } if r1.Length.Intersection(r2.Length).Empty() { pass.Reportf(binop.Pos(), "comparing strings of different sizes for equality will always return false") } } } } return nil, nil } func CheckCanonicalHeaderKey(pass *analysis.Pass) (interface{}, error) { fn := func(node ast.Node, push bool) bool { if !push { return false } assign, ok := node.(*ast.AssignStmt) if ok { // TODO(dh): This risks missing some Header reads, for // example in `h1["foo"] = h2["foo"]` – these edge // cases are probably rare enough to ignore for now. for _, expr := range assign.Lhs { op, ok := expr.(*ast.IndexExpr) if !ok { continue } if IsOfType(pass, op.X, "net/http.Header") { return false } } return true } op, ok := node.(*ast.IndexExpr) if !ok { return true } if !IsOfType(pass, op.X, "net/http.Header") { return true } s, ok := ExprToString(pass, op.Index) if !ok { return true } if s == http.CanonicalHeaderKey(s) { return true } ReportNodef(pass, op, "keys in http.Header are canonicalized, %q is not canonical; fix the constant or use http.CanonicalHeaderKey", s) return true } pass.ResultOf[inspect.Analyzer].(*inspector.Inspector).Nodes([]ast.Node{(*ast.AssignStmt)(nil), (*ast.IndexExpr)(nil)}, fn) return nil, nil } func CheckBenchmarkN(pass *analysis.Pass) (interface{}, error) { fn := func(node ast.Node) { assign := node.(*ast.AssignStmt) if len(assign.Lhs) != 1 || len(assign.Rhs) != 1 { return } sel, ok := assign.Lhs[0].(*ast.SelectorExpr) if !ok { return } if sel.Sel.Name != "N" { return } if !IsOfType(pass, sel.X, "*testing.B") { return } ReportNodef(pass, assign, "should not assign to %s", Render(pass, sel)) } pass.ResultOf[inspect.Analyzer].(*inspector.Inspector).Preorder([]ast.Node{(*ast.AssignStmt)(nil)}, fn) return nil, nil } func CheckUnreadVariableValues(pass *analysis.Pass) (interface{}, error) { for _, ssafn := range pass.ResultOf[buildssa.Analyzer].(*buildssa.SSA).SrcFuncs { if IsExample(ssafn) { continue } node := ssafn.Syntax() if node == nil { continue } if gen, ok := Generator(pass, node.Pos()); ok && gen == facts.Goyacc { // Don't flag unused values in code generated by goyacc. // There may be hundreds of those due to the way the state // machine is constructed. continue } switchTags := map[ssa.Value]struct{}{} ast.Inspect(node, func(node ast.Node) bool { s, ok := node.(*ast.SwitchStmt) if !ok { return true } v, _ := ssafn.ValueForExpr(s.Tag) switchTags[v] = struct{}{} return true }) hasUse := func(v ssa.Value) bool { if _, ok := switchTags[v]; ok { return true } refs := v.Referrers() if refs == nil { // TODO investigate why refs can be nil return true } return len(FilterDebug(*refs)) > 0 } ast.Inspect(node, func(node ast.Node) bool { assign, ok := node.(*ast.AssignStmt) if !ok { return true } if len(assign.Lhs) > 1 && len(assign.Rhs) == 1 { // Either a function call with multiple return values, // or a comma-ok assignment val, _ := ssafn.ValueForExpr(assign.Rhs[0]) if val == nil { return true } refs := val.Referrers() if refs == nil { return true } for _, ref := range *refs { ex, ok := ref.(*ssa.Extract) if !ok { continue } if !hasUse(ex) { lhs := assign.Lhs[ex.Index] if ident, ok := lhs.(*ast.Ident); !ok || ok && ident.Name == "_" { continue } ReportNodef(pass, lhs, "this value of %s is never used", lhs) } } return true } for i, lhs := range assign.Lhs { rhs := assign.Rhs[i] if ident, ok := lhs.(*ast.Ident); !ok || ok && ident.Name == "_" { continue } val, _ := ssafn.ValueForExpr(rhs) if val == nil { continue } if !hasUse(val) { ReportNodef(pass, lhs, "this value of %s is never used", lhs) } } return true }) } return nil, nil } func CheckPredeterminedBooleanExprs(pass *analysis.Pass) (interface{}, error) { for _, ssafn := range pass.ResultOf[buildssa.Analyzer].(*buildssa.SSA).SrcFuncs { for _, block := range ssafn.Blocks { for _, ins := range block.Instrs { ssabinop, ok := ins.(*ssa.BinOp) if !ok { continue } switch ssabinop.Op { case token.GTR, token.LSS, token.EQL, token.NEQ, token.LEQ, token.GEQ: default: continue } xs, ok1 := consts(ssabinop.X, nil, nil) ys, ok2 := consts(ssabinop.Y, nil, nil) if !ok1 || !ok2 || len(xs) == 0 || len(ys) == 0 { continue } trues := 0 for _, x := range xs { for _, y := range ys { if x.Value == nil { if y.Value == nil { trues++ } continue } if constant.Compare(x.Value, ssabinop.Op, y.Value) { trues++ } } } b := trues != 0 if trues == 0 || trues == len(xs)*len(ys) { pass.Reportf(ssabinop.Pos(), "binary expression is always %t for all possible values (%s %s %s)", b, xs, ssabinop.Op, ys) } } } } return nil, nil } func CheckNilMaps(pass *analysis.Pass) (interface{}, error) { for _, ssafn := range pass.ResultOf[buildssa.Analyzer].(*buildssa.SSA).SrcFuncs { for _, block := range ssafn.Blocks { for _, ins := range block.Instrs { mu, ok := ins.(*ssa.MapUpdate) if !ok { continue } c, ok := mu.Map.(*ssa.Const) if !ok { continue } if c.Value != nil { continue } pass.Reportf(mu.Pos(), "assignment to nil map") } } } return nil, nil } func CheckExtremeComparison(pass *analysis.Pass) (interface{}, error) { isobj := func(expr ast.Expr, name string) bool { sel, ok := expr.(*ast.SelectorExpr) if !ok { return false } return IsObject(pass.TypesInfo.ObjectOf(sel.Sel), name) } fn := func(node ast.Node) { expr := node.(*ast.BinaryExpr) tx := pass.TypesInfo.TypeOf(expr.X) basic, ok := tx.Underlying().(*types.Basic) if !ok { return } var max string var min string switch basic.Kind() { case types.Uint8: max = "math.MaxUint8" case types.Uint16: max = "math.MaxUint16" case types.Uint32: max = "math.MaxUint32" case types.Uint64: max = "math.MaxUint64" case types.Uint: max = "math.MaxUint64" case types.Int8: min = "math.MinInt8" max = "math.MaxInt8" case types.Int16: min = "math.MinInt16" max = "math.MaxInt16" case types.Int32: min = "math.MinInt32" max = "math.MaxInt32" case types.Int64: min = "math.MinInt64" max = "math.MaxInt64" case types.Int: min = "math.MinInt64" max = "math.MaxInt64" } if (expr.Op == token.GTR || expr.Op == token.GEQ) && isobj(expr.Y, max) || (expr.Op == token.LSS || expr.Op == token.LEQ) && isobj(expr.X, max) { ReportNodef(pass, expr, "no value of type %s is greater than %s", basic, max) } if expr.Op == token.LEQ && isobj(expr.Y, max) || expr.Op == token.GEQ && isobj(expr.X, max) { ReportNodef(pass, expr, "every value of type %s is <= %s", basic, max) } if (basic.Info() & types.IsUnsigned) != 0 { if (expr.Op == token.LSS || expr.Op == token.LEQ) && IsIntLiteral(expr.Y, "0") || (expr.Op == token.GTR || expr.Op == token.GEQ) && IsIntLiteral(expr.X, "0") { ReportNodef(pass, expr, "no value of type %s is less than 0", basic) } if expr.Op == token.GEQ && IsIntLiteral(expr.Y, "0") || expr.Op == token.LEQ && IsIntLiteral(expr.X, "0") { ReportNodef(pass, expr, "every value of type %s is >= 0", basic) } } else { if (expr.Op == token.LSS || expr.Op == token.LEQ) && isobj(expr.Y, min) || (expr.Op == token.GTR || expr.Op == token.GEQ) && isobj(expr.X, min) { ReportNodef(pass, expr, "no value of type %s is less than %s", basic, min) } if expr.Op == token.GEQ && isobj(expr.Y, min) || expr.Op == token.LEQ && isobj(expr.X, min) { ReportNodef(pass, expr, "every value of type %s is >= %s", basic, min) } } } pass.ResultOf[inspect.Analyzer].(*inspector.Inspector).Preorder([]ast.Node{(*ast.BinaryExpr)(nil)}, fn) return nil, nil } func consts(val ssa.Value, out []*ssa.Const, visitedPhis map[string]bool) ([]*ssa.Const, bool) { if visitedPhis == nil { visitedPhis = map[string]bool{} } var ok bool switch val := val.(type) { case *ssa.Phi: if visitedPhis[val.Name()] { break } visitedPhis[val.Name()] = true vals := val.Operands(nil) for _, phival := range vals { out, ok = consts(*phival, out, visitedPhis) if !ok { return nil, false } } case *ssa.Const: out = append(out, val) case *ssa.Convert: out, ok = consts(val.X, out, visitedPhis) if !ok { return nil, false } default: return nil, false } if len(out) < 2 { return out, true } uniq := []*ssa.Const{out[0]} for _, val := range out[1:] { if val.Value == uniq[len(uniq)-1].Value { continue } uniq = append(uniq, val) } return uniq, true } func CheckLoopCondition(pass *analysis.Pass) (interface{}, error) { for _, ssafn := range pass.ResultOf[buildssa.Analyzer].(*buildssa.SSA).SrcFuncs { fn := func(node ast.Node) bool { loop, ok := node.(*ast.ForStmt) if !ok { return true } if loop.Init == nil || loop.Cond == nil || loop.Post == nil { return true } init, ok := loop.Init.(*ast.AssignStmt) if !ok || len(init.Lhs) != 1 || len(init.Rhs) != 1 { return true } cond, ok := loop.Cond.(*ast.BinaryExpr) if !ok { return true } x, ok := cond.X.(*ast.Ident) if !ok { return true } lhs, ok := init.Lhs[0].(*ast.Ident) if !ok { return true } if x.Obj != lhs.Obj { return true } if _, ok := loop.Post.(*ast.IncDecStmt); !ok { return true } v, isAddr := ssafn.ValueForExpr(cond.X) if v == nil || isAddr { return true } switch v := v.(type) { case *ssa.Phi: ops := v.Operands(nil) if len(ops) != 2 { return true } _, ok := (*ops[0]).(*ssa.Const) if !ok { return true } sigma, ok := (*ops[1]).(*ssa.Sigma) if !ok { return true } if sigma.X != v { return true } case *ssa.UnOp: return true } ReportNodef(pass, cond, "variable in loop condition never changes") return true } Inspect(ssafn.Syntax(), fn) } return nil, nil } func CheckArgOverwritten(pass *analysis.Pass) (interface{}, error) { for _, ssafn := range pass.ResultOf[buildssa.Analyzer].(*buildssa.SSA).SrcFuncs { fn := func(node ast.Node) bool { var typ *ast.FuncType var body *ast.BlockStmt switch fn := node.(type) { case *ast.FuncDecl: typ = fn.Type body = fn.Body case *ast.FuncLit: typ = fn.Type body = fn.Body } if body == nil { return true } if len(typ.Params.List) == 0 { return true } for _, field := range typ.Params.List { for _, arg := range field.Names { obj := pass.TypesInfo.ObjectOf(arg) var ssaobj *ssa.Parameter for _, param := range ssafn.Params { if param.Object() == obj { ssaobj = param break } } if ssaobj == nil { continue } refs := ssaobj.Referrers() if refs == nil { continue } if len(FilterDebug(*refs)) != 0 { continue } assigned := false ast.Inspect(body, func(node ast.Node) bool { assign, ok := node.(*ast.AssignStmt) if !ok { return true } for _, lhs := range assign.Lhs { ident, ok := lhs.(*ast.Ident) if !ok { continue } if pass.TypesInfo.ObjectOf(ident) == obj { assigned = true return false } } return true }) if assigned { ReportNodef(pass, arg, "argument %s is overwritten before first use", arg) } } } return true } Inspect(ssafn.Syntax(), fn) } return nil, nil } func CheckIneffectiveLoop(pass *analysis.Pass) (interface{}, error) { // This check detects some, but not all unconditional loop exits. // We give up in the following cases: // // - a goto anywhere in the loop. The goto might skip over our // return, and we don't check that it doesn't. // // - any nested, unlabelled continue, even if it is in another // loop or closure. fn := func(node ast.Node) { var body *ast.BlockStmt switch fn := node.(type) { case *ast.FuncDecl: body = fn.Body case *ast.FuncLit: body = fn.Body default: panic(fmt.Sprintf("unreachable: %T", node)) } if body == nil { return } labels := map[*ast.Object]ast.Stmt{} ast.Inspect(body, func(node ast.Node) bool { label, ok := node.(*ast.LabeledStmt) if !ok { return true } labels[label.Label.Obj] = label.Stmt return true }) ast.Inspect(body, func(node ast.Node) bool { var loop ast.Node var body *ast.BlockStmt switch node := node.(type) { case *ast.ForStmt: body = node.Body loop = node case *ast.RangeStmt: typ := pass.TypesInfo.TypeOf(node.X) if _, ok := typ.Underlying().(*types.Map); ok { // looping once over a map is a valid pattern for // getting an arbitrary element. return true } body = node.Body loop = node default: return true } if len(body.List) < 2 { // avoid flagging the somewhat common pattern of using // a range loop to get the first element in a slice, // or the first rune in a string. return true } var unconditionalExit ast.Node hasBranching := false for _, stmt := range body.List { switch stmt := stmt.(type) { case *ast.BranchStmt: switch stmt.Tok { case token.BREAK: if stmt.Label == nil || labels[stmt.Label.Obj] == loop { unconditionalExit = stmt } case token.CONTINUE: if stmt.Label == nil || labels[stmt.Label.Obj] == loop { unconditionalExit = nil return false } } case *ast.ReturnStmt: unconditionalExit = stmt case *ast.IfStmt, *ast.ForStmt, *ast.RangeStmt, *ast.SwitchStmt, *ast.SelectStmt: hasBranching = true } } if unconditionalExit == nil || !hasBranching { return false } ast.Inspect(body, func(node ast.Node) bool { if branch, ok := node.(*ast.BranchStmt); ok { switch branch.Tok { case token.GOTO: unconditionalExit = nil return false case token.CONTINUE: if branch.Label != nil && labels[branch.Label.Obj] != loop { return true } unconditionalExit = nil return false } } return true }) if unconditionalExit != nil { ReportNodef(pass, unconditionalExit, "the surrounding loop is unconditionally terminated") } return true }) } pass.ResultOf[inspect.Analyzer].(*inspector.Inspector).Preorder([]ast.Node{(*ast.FuncDecl)(nil), (*ast.FuncLit)(nil)}, fn) return nil, nil } func CheckNilContext(pass *analysis.Pass) (interface{}, error) { fn := func(node ast.Node) { call := node.(*ast.CallExpr) if len(call.Args) == 0 { return } if typ, ok := pass.TypesInfo.TypeOf(call.Args[0]).(*types.Basic); !ok || typ.Kind() != types.UntypedNil { return } sig, ok := pass.TypesInfo.TypeOf(call.Fun).(*types.Signature) if !ok { return } if sig.Params().Len() == 0 { return } if !IsType(sig.Params().At(0).Type(), "context.Context") { return } ReportNodef(pass, call.Args[0], "do not pass a nil Context, even if a function permits it; pass context.TODO if you are unsure about which Context to use") } pass.ResultOf[inspect.Analyzer].(*inspector.Inspector).Preorder([]ast.Node{(*ast.CallExpr)(nil)}, fn) return nil, nil } func CheckSeeker(pass *analysis.Pass) (interface{}, error) { fn := func(node ast.Node) { call := node.(*ast.CallExpr) sel, ok := call.Fun.(*ast.SelectorExpr) if !ok { return } if sel.Sel.Name != "Seek" { return } if len(call.Args) != 2 { return } arg0, ok := call.Args[Arg("(io.Seeker).Seek.offset")].(*ast.SelectorExpr) if !ok { return } switch arg0.Sel.Name { case "SeekStart", "SeekCurrent", "SeekEnd": default: return } pkg, ok := arg0.X.(*ast.Ident) if !ok { return } if pkg.Name != "io" { return } ReportNodef(pass, call, "the first argument of io.Seeker is the offset, but an io.Seek* constant is being used instead") } pass.ResultOf[inspect.Analyzer].(*inspector.Inspector).Preorder([]ast.Node{(*ast.CallExpr)(nil)}, fn) return nil, nil } func CheckIneffectiveAppend(pass *analysis.Pass) (interface{}, error) { isAppend := func(ins ssa.Value) bool { call, ok := ins.(*ssa.Call) if !ok { return false } if call.Call.IsInvoke() { return false } if builtin, ok := call.Call.Value.(*ssa.Builtin); !ok || builtin.Name() != "append" { return false } return true } for _, ssafn := range pass.ResultOf[buildssa.Analyzer].(*buildssa.SSA).SrcFuncs { for _, block := range ssafn.Blocks { for _, ins := range block.Instrs { val, ok := ins.(ssa.Value) if !ok || !isAppend(val) { continue } isUsed := false visited := map[ssa.Instruction]bool{} var walkRefs func(refs []ssa.Instruction) walkRefs = func(refs []ssa.Instruction) { loop: for _, ref := range refs { if visited[ref] { continue } visited[ref] = true if _, ok := ref.(*ssa.DebugRef); ok { continue } switch ref := ref.(type) { case *ssa.Phi: walkRefs(*ref.Referrers()) case *ssa.Sigma: walkRefs(*ref.Referrers()) case ssa.Value: if !isAppend(ref) { isUsed = true } else { walkRefs(*ref.Referrers()) } case ssa.Instruction: isUsed = true break loop } } } refs := val.Referrers() if refs == nil { continue } walkRefs(*refs) if !isUsed { pass.Reportf(ins.Pos(), "this result of append is never used, except maybe in other appends") } } } } return nil, nil } func CheckConcurrentTesting(pass *analysis.Pass) (interface{}, error) { for _, ssafn := range pass.ResultOf[buildssa.Analyzer].(*buildssa.SSA).SrcFuncs { for _, block := range ssafn.Blocks { for _, ins := range block.Instrs { gostmt, ok := ins.(*ssa.Go) if !ok { continue } var fn *ssa.Function switch val := gostmt.Call.Value.(type) { case *ssa.Function: fn = val case *ssa.MakeClosure: fn = val.Fn.(*ssa.Function) default: continue } if fn.Blocks == nil { continue } for _, block := range fn.Blocks { for _, ins := range block.Instrs { call, ok := ins.(*ssa.Call) if !ok { continue } if call.Call.IsInvoke() { continue } callee := call.Call.StaticCallee() if callee == nil { continue } recv := callee.Signature.Recv() if recv == nil { continue } if !IsType(recv.Type(), "*testing.common") { continue } fn, ok := call.Call.StaticCallee().Object().(*types.Func) if !ok { continue } name := fn.Name() switch name { case "FailNow", "Fatal", "Fatalf", "SkipNow", "Skip", "Skipf": default: continue } pass.Reportf(gostmt.Pos(), "the goroutine calls T.%s, which must be called in the same goroutine as the test", name) } } } } } return nil, nil } func eachCall(ssafn *ssa.Function, fn func(caller *ssa.Function, site ssa.CallInstruction, callee *ssa.Function)) { for _, b := range ssafn.Blocks { for _, instr := range b.Instrs { if site, ok := instr.(ssa.CallInstruction); ok { if g := site.Common().StaticCallee(); g != nil { fn(ssafn, site, g) } } } } } func CheckCyclicFinalizer(pass *analysis.Pass) (interface{}, error) { fn := func(caller *ssa.Function, site ssa.CallInstruction, callee *ssa.Function) { if callee.RelString(nil) != "runtime.SetFinalizer" { return } arg0 := site.Common().Args[Arg("runtime.SetFinalizer.obj")] if iface, ok := arg0.(*ssa.MakeInterface); ok { arg0 = iface.X } unop, ok := arg0.(*ssa.UnOp) if !ok { return } v, ok := unop.X.(*ssa.Alloc) if !ok { return } arg1 := site.Common().Args[Arg("runtime.SetFinalizer.finalizer")] if iface, ok := arg1.(*ssa.MakeInterface); ok { arg1 = iface.X } mc, ok := arg1.(*ssa.MakeClosure) if !ok { return } for _, b := range mc.Bindings { if b == v { pos := lint.DisplayPosition(pass.Fset, mc.Fn.Pos()) pass.Reportf(site.Pos(), "the finalizer closes over the object, preventing the finalizer from ever running (at %s)", pos) } } } for _, ssafn := range pass.ResultOf[buildssa.Analyzer].(*buildssa.SSA).SrcFuncs { eachCall(ssafn, fn) } return nil, nil } /* func CheckSliceOutOfBounds(pass *analysis.Pass) (interface{}, error) { for _, ssafn := range pass.ResultOf[buildssa.Analyzer].(*buildssa.SSA).SrcFuncs { for _, block := range ssafn.Blocks { for _, ins := range block.Instrs { ia, ok := ins.(*ssa.IndexAddr) if !ok { continue } if _, ok := ia.X.Type().Underlying().(*types.Slice); !ok { continue } sr, ok1 := c.funcDescs.Get(ssafn).Ranges[ia.X].(vrp.SliceInterval) idxr, ok2 := c.funcDescs.Get(ssafn).Ranges[ia.Index].(vrp.IntInterval) if !ok1 || !ok2 || !sr.IsKnown() || !idxr.IsKnown() || sr.Length.Empty() || idxr.Empty() { continue } if idxr.Lower.Cmp(sr.Length.Upper) >= 0 { ReportNodef(pass, ia, "index out of bounds") } } } } return nil, nil } */ func CheckDeferLock(pass *analysis.Pass) (interface{}, error) { for _, ssafn := range pass.ResultOf[buildssa.Analyzer].(*buildssa.SSA).SrcFuncs { for _, block := range ssafn.Blocks { instrs := FilterDebug(block.Instrs) if len(instrs) < 2 { continue } for i, ins := range instrs[:len(instrs)-1] { call, ok := ins.(*ssa.Call) if !ok { continue } if !IsCallTo(call.Common(), "(*sync.Mutex).Lock") && !IsCallTo(call.Common(), "(*sync.RWMutex).RLock") { continue } nins, ok := instrs[i+1].(*ssa.Defer) if !ok { continue } if !IsCallTo(&nins.Call, "(*sync.Mutex).Lock") && !IsCallTo(&nins.Call, "(*sync.RWMutex).RLock") { continue } if call.Common().Args[0] != nins.Call.Args[0] { continue } name := shortCallName(call.Common()) alt := "" switch name { case "Lock": alt = "Unlock" case "RLock": alt = "RUnlock" } pass.Reportf(nins.Pos(), "deferring %s right after having locked already; did you mean to defer %s?", name, alt) } } } return nil, nil } func CheckNaNComparison(pass *analysis.Pass) (interface{}, error) { isNaN := func(v ssa.Value) bool { call, ok := v.(*ssa.Call) if !ok { return false } return IsCallTo(call.Common(), "math.NaN") } for _, ssafn := range pass.ResultOf[buildssa.Analyzer].(*buildssa.SSA).SrcFuncs { for _, block := range ssafn.Blocks { for _, ins := range block.Instrs { ins, ok := ins.(*ssa.BinOp) if !ok { continue } if isNaN(ins.X) || isNaN(ins.Y) { pass.Reportf(ins.Pos(), "no value is equal to NaN, not even NaN itself") } } } } return nil, nil } func CheckInfiniteRecursion(pass *analysis.Pass) (interface{}, error) { for _, ssafn := range pass.ResultOf[buildssa.Analyzer].(*buildssa.SSA).SrcFuncs { eachCall(ssafn, func(caller *ssa.Function, site ssa.CallInstruction, callee *ssa.Function) { if callee != ssafn { return } if _, ok := site.(*ssa.Go); ok { // Recursively spawning goroutines doesn't consume // stack space infinitely, so don't flag it. return } block := site.Block() canReturn := false for _, b := range ssafn.Blocks { if block.Dominates(b) { continue } if len(b.Instrs) == 0 { continue } if _, ok := b.Instrs[len(b.Instrs)-1].(*ssa.Return); ok { canReturn = true break } } if canReturn { return } pass.Reportf(site.Pos(), "infinite recursive call") }) } return nil, nil } func objectName(obj types.Object) string { if obj == nil { return "" } var name string if obj.Pkg() != nil && obj.Pkg().Scope().Lookup(obj.Name()) == obj { s := obj.Pkg().Path() if s != "" { name += s + "." } } name += obj.Name() return name } func isName(pass *analysis.Pass, expr ast.Expr, name string) bool { var obj types.Object switch expr := expr.(type) { case *ast.Ident: obj = pass.TypesInfo.ObjectOf(expr) case *ast.SelectorExpr: obj = pass.TypesInfo.ObjectOf(expr.Sel) } return objectName(obj) == name } func CheckLeakyTimeTick(pass *analysis.Pass) (interface{}, error) { for _, ssafn := range pass.ResultOf[buildssa.Analyzer].(*buildssa.SSA).SrcFuncs { if IsInMain(pass, ssafn) || IsInTest(pass, ssafn) { continue } for _, block := range ssafn.Blocks { for _, ins := range block.Instrs { call, ok := ins.(*ssa.Call) if !ok || !IsCallTo(call.Common(), "time.Tick") { continue } if !functions.Terminates(call.Parent()) { continue } pass.Reportf(call.Pos(), "using time.Tick leaks the underlying ticker, consider using it only in endless functions, tests and the main package, and use time.NewTicker here") } } } return nil, nil } func CheckDoubleNegation(pass *analysis.Pass) (interface{}, error) { fn := func(node ast.Node) { unary1 := node.(*ast.UnaryExpr) unary2, ok := unary1.X.(*ast.UnaryExpr) if !ok { return } if unary1.Op != token.NOT || unary2.Op != token.NOT { return } ReportNodef(pass, unary1, "negating a boolean twice has no effect; is this a typo?") } pass.ResultOf[inspect.Analyzer].(*inspector.Inspector).Preorder([]ast.Node{(*ast.UnaryExpr)(nil)}, fn) return nil, nil } func hasSideEffects(node ast.Node) bool { dynamic := false ast.Inspect(node, func(node ast.Node) bool { switch node := node.(type) { case *ast.CallExpr: dynamic = true return false case *ast.UnaryExpr: if node.Op == token.ARROW { dynamic = true return false } } return true }) return dynamic } func CheckRepeatedIfElse(pass *analysis.Pass) (interface{}, error) { seen := map[ast.Node]bool{} var collectConds func(ifstmt *ast.IfStmt, inits []ast.Stmt, conds []ast.Expr) ([]ast.Stmt, []ast.Expr) collectConds = func(ifstmt *ast.IfStmt, inits []ast.Stmt, conds []ast.Expr) ([]ast.Stmt, []ast.Expr) { seen[ifstmt] = true if ifstmt.Init != nil { inits = append(inits, ifstmt.Init) } conds = append(conds, ifstmt.Cond) if elsestmt, ok := ifstmt.Else.(*ast.IfStmt); ok { return collectConds(elsestmt, inits, conds) } return inits, conds } fn := func(node ast.Node) { ifstmt := node.(*ast.IfStmt) if seen[ifstmt] { return } inits, conds := collectConds(ifstmt, nil, nil) if len(inits) > 0 { return } for _, cond := range conds { if hasSideEffects(cond) { return } } counts := map[string]int{} for _, cond := range conds { s := Render(pass, cond) counts[s]++ if counts[s] == 2 { ReportNodef(pass, cond, "this condition occurs multiple times in this if/else if chain") } } } pass.ResultOf[inspect.Analyzer].(*inspector.Inspector).Preorder([]ast.Node{(*ast.IfStmt)(nil)}, fn) return nil, nil } func CheckSillyBitwiseOps(pass *analysis.Pass) (interface{}, error) { for _, ssafn := range pass.ResultOf[buildssa.Analyzer].(*buildssa.SSA).SrcFuncs { for _, block := range ssafn.Blocks { for _, ins := range block.Instrs { ins, ok := ins.(*ssa.BinOp) if !ok { continue } if c, ok := ins.Y.(*ssa.Const); !ok || c.Value == nil || c.Value.Kind() != constant.Int || c.Uint64() != 0 { continue } switch ins.Op { case token.AND, token.OR, token.XOR: default: // we do not flag shifts because too often, x<<0 is part // of a pattern, x<<0, x<<8, x<<16, ... continue } path, _ := astutil.PathEnclosingInterval(File(pass, ins), ins.Pos(), ins.Pos()) if len(path) == 0 { continue } if node, ok := path[0].(*ast.BinaryExpr); !ok || !IsZero(node.Y) { continue } switch ins.Op { case token.AND: pass.Reportf(ins.Pos(), "x & 0 always equals 0") case token.OR, token.XOR: pass.Reportf(ins.Pos(), "x %s 0 always equals x", ins.Op) } } } } return nil, nil } func CheckNonOctalFileMode(pass *analysis.Pass) (interface{}, error) { fn := func(node ast.Node) { call := node.(*ast.CallExpr) sig, ok := pass.TypesInfo.TypeOf(call.Fun).(*types.Signature) if !ok { return } n := sig.Params().Len() var args []int for i := 0; i < n; i++ { typ := sig.Params().At(i).Type() if IsType(typ, "os.FileMode") { args = append(args, i) } } for _, i := range args { lit, ok := call.Args[i].(*ast.BasicLit) if !ok { continue } if len(lit.Value) == 3 && lit.Value[0] != '0' && lit.Value[0] >= '0' && lit.Value[0] <= '7' && lit.Value[1] >= '0' && lit.Value[1] <= '7' && lit.Value[2] >= '0' && lit.Value[2] <= '7' { v, err := strconv.ParseInt(lit.Value, 10, 64) if err != nil { continue } ReportNodef(pass, call.Args[i], "file mode '%s' evaluates to %#o; did you mean '0%s'?", lit.Value, v, lit.Value) } } } pass.ResultOf[inspect.Analyzer].(*inspector.Inspector).Preorder([]ast.Node{(*ast.CallExpr)(nil)}, fn) return nil, nil } func CheckPureFunctions(pass *analysis.Pass) (interface{}, error) { pure := pass.ResultOf[facts.Purity].(facts.PurityResult) fnLoop: for _, ssafn := range pass.ResultOf[buildssa.Analyzer].(*buildssa.SSA).SrcFuncs { if IsInTest(pass, ssafn) { params := ssafn.Signature.Params() for i := 0; i < params.Len(); i++ { param := params.At(i) if IsType(param.Type(), "*testing.B") { // Ignore discarded pure functions in code related // to benchmarks. Instead of matching BenchmarkFoo // functions, we match any function accepting a // *testing.B. Benchmarks sometimes call generic // functions for doing the actual work, and // checking for the parameter is a lot easier and // faster than analyzing call trees. continue fnLoop } } } for _, b := range ssafn.Blocks { for _, ins := range b.Instrs { ins, ok := ins.(*ssa.Call) if !ok { continue } refs := ins.Referrers() if refs == nil || len(FilterDebug(*refs)) > 0 { continue } callee := ins.Common().StaticCallee() if callee == nil { continue } if callee.Object() == nil { // TODO(dh): support anonymous functions continue } if _, ok := pure[callee.Object().(*types.Func)]; ok { pass.Reportf(ins.Pos(), "%s is a pure function but its return value is ignored", callee.Name()) continue } } } } return nil, nil } func CheckDeprecated(pass *analysis.Pass) (interface{}, error) { deprs := pass.ResultOf[facts.Deprecated].(facts.DeprecatedResult) // Selectors can appear outside of function literals, e.g. when // declaring package level variables. var tfn types.Object stack := 0 fn := func(node ast.Node, push bool) bool { if !push { stack-- return false } stack++ if stack == 1 { tfn = nil } if fn, ok := node.(*ast.FuncDecl); ok { tfn = pass.TypesInfo.ObjectOf(fn.Name) } sel, ok := node.(*ast.SelectorExpr) if !ok { return true } obj := pass.TypesInfo.ObjectOf(sel.Sel) if obj.Pkg() == nil { return true } if pass.Pkg == obj.Pkg() || obj.Pkg().Path()+"_test" == pass.Pkg.Path() { // Don't flag stuff in our own package return true } if depr, ok := deprs.Objects[obj]; ok { // Look for the first available alternative, not the first // version something was deprecated in. If a function was // deprecated in Go 1.6, an alternative has been available // already in 1.0, and we're targeting 1.2, it still // makes sense to use the alternative from 1.0, to be // future-proof. minVersion := deprecated.Stdlib[SelectorName(pass, sel)].AlternativeAvailableSince if !IsGoVersion(pass, minVersion) { return true } if tfn != nil { if _, ok := deprs.Objects[tfn]; ok { // functions that are deprecated may use deprecated // symbols return true } } ReportNodef(pass, sel, "%s is deprecated: %s", Render(pass, sel), depr.Msg) return true } return true } imps := map[string]*types.Package{} for _, imp := range pass.Pkg.Imports() { imps[imp.Path()] = imp } fn2 := func(node ast.Node) { spec := node.(*ast.ImportSpec) p := spec.Path.Value path := p[1 : len(p)-1] imp := imps[path] if depr, ok := deprs.Packages[imp]; ok { ReportNodef(pass, spec, "Package %s is deprecated: %s", path, depr.Msg) } } pass.ResultOf[inspect.Analyzer].(*inspector.Inspector).Nodes(nil, fn) pass.ResultOf[inspect.Analyzer].(*inspector.Inspector).Preorder([]ast.Node{(*ast.ImportSpec)(nil)}, fn2) return nil, nil } func callChecker(rules map[string]CallCheck) func(pass *analysis.Pass) (interface{}, error) { return func(pass *analysis.Pass) (interface{}, error) { return checkCalls(pass, rules) } } func checkCalls(pass *analysis.Pass, rules map[string]CallCheck) (interface{}, error) { ranges := pass.ResultOf[valueRangesAnalyzer].(map[*ssa.Function]vrp.Ranges) fn := func(caller *ssa.Function, site ssa.CallInstruction, callee *ssa.Function) { obj, ok := callee.Object().(*types.Func) if !ok { return } r, ok := rules[lint.FuncName(obj)] if !ok { return } var args []*Argument ssaargs := site.Common().Args if callee.Signature.Recv() != nil { ssaargs = ssaargs[1:] } for _, arg := range ssaargs { if iarg, ok := arg.(*ssa.MakeInterface); ok { arg = iarg.X } vr := ranges[site.Parent()][arg] args = append(args, &Argument{Value: Value{arg, vr}}) } call := &Call{ Pass: pass, Instr: site, Args: args, Parent: site.Parent(), } r(call) for idx, arg := range call.Args { _ = idx for _, e := range arg.invalids { // path, _ := astutil.PathEnclosingInterval(f.File, edge.Site.Pos(), edge.Site.Pos()) // if len(path) < 2 { // continue // } // astcall, ok := path[0].(*ast.CallExpr) // if !ok { // continue // } // pass.Reportf(astcall.Args[idx], "%s", e) pass.Reportf(site.Pos(), "%s", e) } } for _, e := range call.invalids { pass.Reportf(call.Instr.Common().Pos(), "%s", e) } } for _, ssafn := range pass.ResultOf[buildssa.Analyzer].(*buildssa.SSA).SrcFuncs { eachCall(ssafn, fn) } return nil, nil } func shortCallName(call *ssa.CallCommon) string { if call.IsInvoke() { return "" } switch v := call.Value.(type) { case *ssa.Function: fn, ok := v.Object().(*types.Func) if !ok { return "" } return fn.Name() case *ssa.Builtin: return v.Name() } return "" } func CheckWriterBufferModified(pass *analysis.Pass) (interface{}, error) { // TODO(dh): this might be a good candidate for taint analysis. // Taint the argument as MUST_NOT_MODIFY, then propagate that // through functions like bytes.Split for _, ssafn := range pass.ResultOf[buildssa.Analyzer].(*buildssa.SSA).SrcFuncs { sig := ssafn.Signature if ssafn.Name() != "Write" || sig.Recv() == nil || sig.Params().Len() != 1 || sig.Results().Len() != 2 { continue } tArg, ok := sig.Params().At(0).Type().(*types.Slice) if !ok { continue } if basic, ok := tArg.Elem().(*types.Basic); !ok || basic.Kind() != types.Byte { continue } if basic, ok := sig.Results().At(0).Type().(*types.Basic); !ok || basic.Kind() != types.Int { continue } if named, ok := sig.Results().At(1).Type().(*types.Named); !ok || !IsType(named, "error") { continue } for _, block := range ssafn.Blocks { for _, ins := range block.Instrs { switch ins := ins.(type) { case *ssa.Store: addr, ok := ins.Addr.(*ssa.IndexAddr) if !ok { continue } if addr.X != ssafn.Params[1] { continue } pass.Reportf(ins.Pos(), "io.Writer.Write must not modify the provided buffer, not even temporarily") case *ssa.Call: if !IsCallTo(ins.Common(), "append") { continue } if ins.Common().Args[0] != ssafn.Params[1] { continue } pass.Reportf(ins.Pos(), "io.Writer.Write must not modify the provided buffer, not even temporarily") } } } } return nil, nil } func loopedRegexp(name string) CallCheck { return func(call *Call) { if len(extractConsts(call.Args[0].Value.Value)) == 0 { return } if !isInLoop(call.Instr.Block()) { return } call.Invalid(fmt.Sprintf("calling %s in a loop has poor performance, consider using regexp.Compile", name)) } } func CheckEmptyBranch(pass *analysis.Pass) (interface{}, error) { for _, ssafn := range pass.ResultOf[buildssa.Analyzer].(*buildssa.SSA).SrcFuncs { if ssafn.Syntax() == nil { continue } if IsExample(ssafn) { continue } fn := func(node ast.Node) bool { ifstmt, ok := node.(*ast.IfStmt) if !ok { return true } if ifstmt.Else != nil { b, ok := ifstmt.Else.(*ast.BlockStmt) if !ok || len(b.List) != 0 { return true } ReportfFG(pass, ifstmt.Else.Pos(), "empty branch") } if len(ifstmt.Body.List) != 0 { return true } ReportfFG(pass, ifstmt.Pos(), "empty branch") return true } Inspect(ssafn.Syntax(), fn) } return nil, nil } func CheckMapBytesKey(pass *analysis.Pass) (interface{}, error) { for _, fn := range pass.ResultOf[buildssa.Analyzer].(*buildssa.SSA).SrcFuncs { for _, b := range fn.Blocks { insLoop: for _, ins := range b.Instrs { // find []byte -> string conversions conv, ok := ins.(*ssa.Convert) if !ok || conv.Type() != types.Universe.Lookup("string").Type() { continue } if s, ok := conv.X.Type().(*types.Slice); !ok || s.Elem() != types.Universe.Lookup("byte").Type() { continue } refs := conv.Referrers() // need at least two (DebugRef) references: the // conversion and the *ast.Ident if refs == nil || len(*refs) < 2 { continue } ident := false // skip first reference, that's the conversion itself for _, ref := range (*refs)[1:] { switch ref := ref.(type) { case *ssa.DebugRef: if _, ok := ref.Expr.(*ast.Ident); !ok { // the string seems to be used somewhere // unexpected; the default branch should // catch this already, but be safe continue insLoop } else { ident = true } case *ssa.Lookup: default: // the string is used somewhere else than a // map lookup continue insLoop } } // the result of the conversion wasn't assigned to an // identifier if !ident { continue } pass.Reportf(conv.Pos(), "m[string(key)] would be more efficient than k := string(key); m[k]") } } } return nil, nil } func CheckRangeStringRunes(pass *analysis.Pass) (interface{}, error) { return sharedcheck.CheckRangeStringRunes(pass) } func CheckSelfAssignment(pass *analysis.Pass) (interface{}, error) { fn := func(node ast.Node) { assign := node.(*ast.AssignStmt) if assign.Tok != token.ASSIGN || len(assign.Lhs) != len(assign.Rhs) { return } for i, stmt := range assign.Lhs { rlh := Render(pass, stmt) rrh := Render(pass, assign.Rhs[i]) if rlh == rrh { ReportfFG(pass, assign.Pos(), "self-assignment of %s to %s", rrh, rlh) } } } pass.ResultOf[inspect.Analyzer].(*inspector.Inspector).Preorder([]ast.Node{(*ast.AssignStmt)(nil)}, fn) return nil, nil } func buildTagsIdentical(s1, s2 []string) bool { if len(s1) != len(s2) { return false } s1s := make([]string, len(s1)) copy(s1s, s1) sort.Strings(s1s) s2s := make([]string, len(s2)) copy(s2s, s2) sort.Strings(s2s) for i, s := range s1s { if s != s2s[i] { return false } } return true } func CheckDuplicateBuildConstraints(pass *analysis.Pass) (interface{}, error) { for _, f := range pass.Files { constraints := buildTags(f) for i, constraint1 := range constraints { for j, constraint2 := range constraints { if i >= j { continue } if buildTagsIdentical(constraint1, constraint2) { ReportfFG(pass, f.Pos(), "identical build constraints %q and %q", strings.Join(constraint1, " "), strings.Join(constraint2, " ")) } } } } return nil, nil } func CheckSillyRegexp(pass *analysis.Pass) (interface{}, error) { // We could use the rule checking engine for this, but the // arguments aren't really invalid. for _, fn := range pass.ResultOf[buildssa.Analyzer].(*buildssa.SSA).SrcFuncs { for _, b := range fn.Blocks { for _, ins := range b.Instrs { call, ok := ins.(*ssa.Call) if !ok { continue } switch CallName(call.Common()) { case "regexp.MustCompile", "regexp.Compile", "regexp.Match", "regexp.MatchReader", "regexp.MatchString": default: continue } c, ok := call.Common().Args[0].(*ssa.Const) if !ok { continue } s := constant.StringVal(c.Value) re, err := syntax.Parse(s, 0) if err != nil { continue } if re.Op != syntax.OpLiteral && re.Op != syntax.OpEmptyMatch { continue } pass.Reportf(call.Pos(), "regular expression does not contain any meta characters") } } } return nil, nil } func CheckMissingEnumTypesInDeclaration(pass *analysis.Pass) (interface{}, error) { fn := func(node ast.Node) { decl := node.(*ast.GenDecl) if !decl.Lparen.IsValid() { return } if decl.Tok != token.CONST { return } groups := GroupSpecs(pass.Fset, decl.Specs) groupLoop: for _, group := range groups { if len(group) < 2 { continue } if group[0].(*ast.ValueSpec).Type == nil { // first constant doesn't have a type continue groupLoop } for i, spec := range group { spec := spec.(*ast.ValueSpec) if len(spec.Names) != 1 || len(spec.Values) != 1 { continue groupLoop } switch v := spec.Values[0].(type) { case *ast.BasicLit: case *ast.UnaryExpr: if _, ok := v.X.(*ast.BasicLit); !ok { continue groupLoop } default: // if it's not a literal it might be typed, such as // time.Microsecond = 1000 * Nanosecond continue groupLoop } if i == 0 { continue } if spec.Type != nil { continue groupLoop } } ReportNodef(pass, group[0], "only the first constant in this group has an explicit type") } } pass.ResultOf[inspect.Analyzer].(*inspector.Inspector).Preorder([]ast.Node{(*ast.GenDecl)(nil)}, fn) return nil, nil } func CheckTimerResetReturnValue(pass *analysis.Pass) (interface{}, error) { for _, fn := range pass.ResultOf[buildssa.Analyzer].(*buildssa.SSA).SrcFuncs { for _, block := range fn.Blocks { for _, ins := range block.Instrs { call, ok := ins.(*ssa.Call) if !ok { continue } if !IsCallTo(call.Common(), "(*time.Timer).Reset") { continue } refs := call.Referrers() if refs == nil { continue } for _, ref := range FilterDebug(*refs) { ifstmt, ok := ref.(*ssa.If) if !ok { continue } found := false for _, succ := range ifstmt.Block().Succs { if len(succ.Preds) != 1 { // Merge point, not a branch in the // syntactical sense. // FIXME(dh): this is broken for if // statements a la "if x || y" continue } ssautil.Walk(succ, func(b *ssa.BasicBlock) bool { if !succ.Dominates(b) { // We've reached the end of the branch return false } for _, ins := range b.Instrs { // TODO(dh): we should check that // we're receiving from the channel of // a time.Timer to further reduce // false positives. Not a key // priority, considering the rarity of // Reset and the tiny likeliness of a // false positive if ins, ok := ins.(*ssa.UnOp); ok && ins.Op == token.ARROW && IsType(ins.X.Type(), "<-chan time.Time") { found = true return false } } return true }) } if found { pass.Reportf(call.Pos(), "it is not possible to use Reset's return value correctly, as there is a race condition between draining the channel and the new timer expiring") } } } } } return nil, nil } func CheckToLowerToUpperComparison(pass *analysis.Pass) (interface{}, error) { fn := func(node ast.Node) { binExpr := node.(*ast.BinaryExpr) var negative bool switch binExpr.Op { case token.EQL: negative = false case token.NEQ: negative = true default: return } const ( lo = "strings.ToLower" up = "strings.ToUpper" ) var call string if IsCallToAST(pass, binExpr.X, lo) && IsCallToAST(pass, binExpr.Y, lo) { call = lo } else if IsCallToAST(pass, binExpr.X, up) && IsCallToAST(pass, binExpr.Y, up) { call = up } else { return } bang := "" if negative { bang = "!" } ReportNodef(pass, binExpr, "should use %sstrings.EqualFold(a, b) instead of %s(a) %s %s(b)", bang, call, binExpr.Op, call) } pass.ResultOf[inspect.Analyzer].(*inspector.Inspector).Preorder([]ast.Node{(*ast.BinaryExpr)(nil)}, fn) return nil, nil } func CheckUnreachableTypeCases(pass *analysis.Pass) (interface{}, error) { // Check if T subsumes V in a type switch. T subsumes V if T is an interface and T's method set is a subset of V's method set. subsumes := func(T, V types.Type) bool { tIface, ok := T.Underlying().(*types.Interface) if !ok { return false } return types.Implements(V, tIface) } subsumesAny := func(Ts, Vs []types.Type) (types.Type, types.Type, bool) { for _, T := range Ts { for _, V := range Vs { if subsumes(T, V) { return T, V, true } } } return nil, nil, false } fn := func(node ast.Node) { tsStmt := node.(*ast.TypeSwitchStmt) type ccAndTypes struct { cc *ast.CaseClause types []types.Type } // All asserted types in the order of case clauses. ccs := make([]ccAndTypes, 0, len(tsStmt.Body.List)) for _, stmt := range tsStmt.Body.List { cc, _ := stmt.(*ast.CaseClause) // Exclude the 'default' case. if len(cc.List) == 0 { continue } Ts := make([]types.Type, len(cc.List)) for i, expr := range cc.List { Ts[i] = pass.TypesInfo.TypeOf(expr) } ccs = append(ccs, ccAndTypes{cc: cc, types: Ts}) } if len(ccs) <= 1 { // Zero or one case clauses, nothing to check. return } // Check if case clauses following cc have types that are subsumed by cc. for i, cc := range ccs[:len(ccs)-1] { for _, next := range ccs[i+1:] { if T, V, yes := subsumesAny(cc.types, next.types); yes { ReportNodef(pass, next.cc, "unreachable case clause: %s will always match before %s", T.String(), V.String()) } } } } pass.ResultOf[inspect.Analyzer].(*inspector.Inspector).Preorder([]ast.Node{(*ast.TypeSwitchStmt)(nil)}, fn) return nil, nil } func CheckSingleArgAppend(pass *analysis.Pass) (interface{}, error) { fn := func(node ast.Node) { if !IsCallToAST(pass, node, "append") { return } call := node.(*ast.CallExpr) if len(call.Args) != 1 { return } ReportfFG(pass, call.Pos(), "x = append(y) is equivalent to x = y") } pass.ResultOf[inspect.Analyzer].(*inspector.Inspector).Preorder([]ast.Node{(*ast.CallExpr)(nil)}, fn) return nil, nil } func CheckStructTags(pass *analysis.Pass) (interface{}, error) { fn := func(node ast.Node) { for _, field := range node.(*ast.StructType).Fields.List { if field.Tag == nil { continue } tags, err := parseStructTag(field.Tag.Value[1 : len(field.Tag.Value)-1]) if err != nil { ReportNodef(pass, field.Tag, "unparseable struct tag: %s", err) continue } for k, v := range tags { if len(v) > 1 { ReportNodef(pass, field.Tag, "duplicate struct tag %q", k) continue } switch k { case "json": checkJSONTag(pass, field, v[0]) case "xml": checkXMLTag(pass, field, v[0]) } } } } pass.ResultOf[inspect.Analyzer].(*inspector.Inspector).Preorder([]ast.Node{(*ast.StructType)(nil)}, fn) return nil, nil } func checkJSONTag(pass *analysis.Pass, field *ast.Field, tag string) { //lint:ignore SA9003 TODO(dh): should we flag empty tags? if len(tag) == 0 { } fields := strings.Split(tag, ",") for _, r := range fields[0] { if !unicode.IsLetter(r) && !unicode.IsDigit(r) && !strings.ContainsRune("!#$%&()*+-./:<=>?@[]^_{|}~ ", r) { ReportNodef(pass, field.Tag, "invalid JSON field name %q", fields[0]) } } var co, cs, ci int for _, s := range fields[1:] { switch s { case "omitempty": co++ case "": // allow stuff like "-," case "string": cs++ // only for string, floating point, integer and bool T := Dereference(pass.TypesInfo.TypeOf(field.Type).Underlying()).Underlying() basic, ok := T.(*types.Basic) if !ok || (basic.Info()&(types.IsBoolean|types.IsInteger|types.IsFloat|types.IsString)) == 0 { ReportNodef(pass, field.Tag, "the JSON string option only applies to fields of type string, floating point, integer or bool, or pointers to those") } case "inline": ci++ default: ReportNodef(pass, field.Tag, "unknown JSON option %q", s) } } if co > 1 { ReportNodef(pass, field.Tag, `duplicate JSON option "omitempty"`) } if cs > 1 { ReportNodef(pass, field.Tag, `duplicate JSON option "string"`) } if ci > 1 { ReportNodef(pass, field.Tag, `duplicate JSON option "inline"`) } } func checkXMLTag(pass *analysis.Pass, field *ast.Field, tag string) { //lint:ignore SA9003 TODO(dh): should we flag empty tags? if len(tag) == 0 { } fields := strings.Split(tag, ",") counts := map[string]int{} var exclusives []string for _, s := range fields[1:] { switch s { case "attr", "chardata", "cdata", "innerxml", "comment": counts[s]++ if counts[s] == 1 { exclusives = append(exclusives, s) } case "omitempty", "any": counts[s]++ case "": default: ReportNodef(pass, field.Tag, "unknown XML option %q", s) } } for k, v := range counts { if v > 1 { ReportNodef(pass, field.Tag, "duplicate XML option %q", k) } } if len(exclusives) > 1 { ReportNodef(pass, field.Tag, "XML options %s are mutually exclusive", strings.Join(exclusives, " and ")) } }