vikunja-api/vendor/honnef.co/go/tools/staticcheck/vrp/vrp.go

1051 lines
24 KiB
Go
Raw Normal View History

2018-12-31 02:18:41 +01:00
package vrp
// TODO(dh) widening and narrowing have a lot of code in common. Make
// it reusable.
import (
"fmt"
"go/constant"
"go/token"
"go/types"
"math/big"
"sort"
"strings"
2019-04-22 12:59:42 +02:00
"honnef.co/go/tools/lint"
2018-12-31 02:18:41 +01:00
"honnef.co/go/tools/ssa"
)
type Future interface {
Constraint
Futures() []ssa.Value
Resolve()
IsKnown() bool
MarkUnresolved()
MarkResolved()
IsResolved() bool
}
type Range interface {
Union(other Range) Range
IsKnown() bool
}
type Constraint interface {
Y() ssa.Value
isConstraint()
String() string
Eval(*Graph) Range
Operands() []ssa.Value
}
type aConstraint struct {
y ssa.Value
}
func NewConstraint(y ssa.Value) aConstraint {
return aConstraint{y}
}
func (aConstraint) isConstraint() {}
func (c aConstraint) Y() ssa.Value { return c.y }
type PhiConstraint struct {
aConstraint
Vars []ssa.Value
}
func NewPhiConstraint(vars []ssa.Value, y ssa.Value) Constraint {
uniqm := map[ssa.Value]struct{}{}
for _, v := range vars {
uniqm[v] = struct{}{}
}
var uniq []ssa.Value
for v := range uniqm {
uniq = append(uniq, v)
}
return &PhiConstraint{
aConstraint: NewConstraint(y),
Vars: uniq,
}
}
func (c *PhiConstraint) Operands() []ssa.Value {
return c.Vars
}
func (c *PhiConstraint) Eval(g *Graph) Range {
i := Range(nil)
for _, v := range c.Vars {
i = g.Range(v).Union(i)
}
return i
}
func (c *PhiConstraint) String() string {
names := make([]string, len(c.Vars))
for i, v := range c.Vars {
names[i] = v.Name()
}
return fmt.Sprintf("%s = φ(%s)", c.Y().Name(), strings.Join(names, ", "))
}
func isSupportedType(typ types.Type) bool {
switch typ := typ.Underlying().(type) {
case *types.Basic:
switch typ.Kind() {
case types.String, types.UntypedString:
return true
default:
if (typ.Info() & types.IsInteger) == 0 {
return false
}
}
case *types.Chan:
return true
case *types.Slice:
return true
default:
return false
}
return true
}
func ConstantToZ(c constant.Value) Z {
s := constant.ToInt(c).ExactString()
n := &big.Int{}
n.SetString(s, 10)
return NewBigZ(n)
}
func sigmaInteger(g *Graph, ins *ssa.Sigma, cond *ssa.BinOp, ops []*ssa.Value) Constraint {
op := cond.Op
if !ins.Branch {
op = (invertToken(op))
}
switch op {
case token.EQL, token.GTR, token.GEQ, token.LSS, token.LEQ:
default:
return nil
}
var a, b ssa.Value
if (*ops[0]) == ins.X {
a = *ops[0]
b = *ops[1]
} else {
a = *ops[1]
b = *ops[0]
op = flipToken(op)
}
return NewIntIntersectionConstraint(a, b, op, g.ranges, ins)
}
func sigmaString(g *Graph, ins *ssa.Sigma, cond *ssa.BinOp, ops []*ssa.Value) Constraint {
op := cond.Op
if !ins.Branch {
op = (invertToken(op))
}
switch op {
case token.EQL, token.GTR, token.GEQ, token.LSS, token.LEQ:
default:
return nil
}
if ((*ops[0]).Type().Underlying().(*types.Basic).Info() & types.IsString) == 0 {
var a, b ssa.Value
call, ok := (*ops[0]).(*ssa.Call)
if ok && call.Common().Args[0] == ins.X {
a = *ops[0]
b = *ops[1]
} else {
a = *ops[1]
b = *ops[0]
op = flipToken(op)
}
return NewStringIntersectionConstraint(a, b, op, g.ranges, ins)
}
var a, b ssa.Value
if (*ops[0]) == ins.X {
a = *ops[0]
b = *ops[1]
} else {
a = *ops[1]
b = *ops[0]
op = flipToken(op)
}
return NewStringIntersectionConstraint(a, b, op, g.ranges, ins)
}
func sigmaSlice(g *Graph, ins *ssa.Sigma, cond *ssa.BinOp, ops []*ssa.Value) Constraint {
// TODO(dh) sigmaSlice and sigmaString are a lot alike. Can they
// be merged?
//
// XXX support futures
op := cond.Op
if !ins.Branch {
op = (invertToken(op))
}
k, ok := (*ops[1]).(*ssa.Const)
// XXX investigate in what cases this wouldn't be a Const
//
// XXX what if left and right are swapped?
if !ok {
return nil
}
call, ok := (*ops[0]).(*ssa.Call)
if !ok {
return nil
}
builtin, ok := call.Common().Value.(*ssa.Builtin)
if !ok {
return nil
}
if builtin.Name() != "len" {
return nil
}
callops := call.Operands(nil)
v := ConstantToZ(k.Value)
c := NewSliceIntersectionConstraint(*callops[1], IntInterval{}, ins).(*SliceIntersectionConstraint)
switch op {
case token.EQL:
c.I = NewIntInterval(v, v)
case token.GTR, token.GEQ:
off := int64(0)
if cond.Op == token.GTR {
off = 1
}
c.I = NewIntInterval(
v.Add(NewZ(off)),
PInfinity,
)
case token.LSS, token.LEQ:
off := int64(0)
if cond.Op == token.LSS {
off = -1
}
c.I = NewIntInterval(
NInfinity,
v.Add(NewZ(off)),
)
default:
return nil
}
return c
}
func BuildGraph(f *ssa.Function) *Graph {
g := &Graph{
Vertices: map[interface{}]*Vertex{},
ranges: Ranges{},
}
var cs []Constraint
ops := make([]*ssa.Value, 16)
seen := map[ssa.Value]bool{}
for _, block := range f.Blocks {
for _, ins := range block.Instrs {
ops = ins.Operands(ops[:0])
for _, op := range ops {
if c, ok := (*op).(*ssa.Const); ok {
if seen[c] {
continue
}
seen[c] = true
if c.Value == nil {
switch c.Type().Underlying().(type) {
case *types.Slice:
cs = append(cs, NewSliceIntervalConstraint(NewIntInterval(NewZ(0), NewZ(0)), c))
}
continue
}
switch c.Value.Kind() {
case constant.Int:
v := ConstantToZ(c.Value)
cs = append(cs, NewIntIntervalConstraint(NewIntInterval(v, v), c))
case constant.String:
s := constant.StringVal(c.Value)
n := NewZ(int64(len(s)))
cs = append(cs, NewStringIntervalConstraint(NewIntInterval(n, n), c))
}
}
}
}
}
for _, block := range f.Blocks {
for _, ins := range block.Instrs {
switch ins := ins.(type) {
case *ssa.Convert:
switch v := ins.Type().Underlying().(type) {
case *types.Basic:
if (v.Info() & types.IsInteger) == 0 {
continue
}
cs = append(cs, NewIntConversionConstraint(ins.X, ins))
}
case *ssa.Call:
if static := ins.Common().StaticCallee(); static != nil {
if fn, ok := static.Object().(*types.Func); ok {
2019-04-22 12:59:42 +02:00
switch lint.FuncName(fn) {
2018-12-31 02:18:41 +01:00
case "bytes.Index", "bytes.IndexAny", "bytes.IndexByte",
"bytes.IndexFunc", "bytes.IndexRune", "bytes.LastIndex",
"bytes.LastIndexAny", "bytes.LastIndexByte", "bytes.LastIndexFunc",
"strings.Index", "strings.IndexAny", "strings.IndexByte",
"strings.IndexFunc", "strings.IndexRune", "strings.LastIndex",
"strings.LastIndexAny", "strings.LastIndexByte", "strings.LastIndexFunc":
// TODO(dh): instead of limiting by +∞,
// limit by the upper bound of the passed
// string
cs = append(cs, NewIntIntervalConstraint(NewIntInterval(NewZ(-1), PInfinity), ins))
case "bytes.Title", "bytes.ToLower", "bytes.ToTitle", "bytes.ToUpper",
"strings.Title", "strings.ToLower", "strings.ToTitle", "strings.ToUpper":
cs = append(cs, NewCopyConstraint(ins.Common().Args[0], ins))
case "bytes.ToLowerSpecial", "bytes.ToTitleSpecial", "bytes.ToUpperSpecial",
"strings.ToLowerSpecial", "strings.ToTitleSpecial", "strings.ToUpperSpecial":
cs = append(cs, NewCopyConstraint(ins.Common().Args[1], ins))
case "bytes.Compare", "strings.Compare":
cs = append(cs, NewIntIntervalConstraint(NewIntInterval(NewZ(-1), NewZ(1)), ins))
case "bytes.Count", "strings.Count":
// TODO(dh): instead of limiting by +∞,
// limit by the upper bound of the passed
// string.
cs = append(cs, NewIntIntervalConstraint(NewIntInterval(NewZ(0), PInfinity), ins))
case "bytes.Map", "bytes.TrimFunc", "bytes.TrimLeft", "bytes.TrimLeftFunc",
"bytes.TrimRight", "bytes.TrimRightFunc", "bytes.TrimSpace",
"strings.Map", "strings.TrimFunc", "strings.TrimLeft", "strings.TrimLeftFunc",
"strings.TrimRight", "strings.TrimRightFunc", "strings.TrimSpace":
// TODO(dh): lower = 0, upper = upper of passed string
case "bytes.TrimPrefix", "bytes.TrimSuffix",
"strings.TrimPrefix", "strings.TrimSuffix":
// TODO(dh) range between "unmodified" and len(cutset) removed
case "(*bytes.Buffer).Cap", "(*bytes.Buffer).Len", "(*bytes.Reader).Len", "(*bytes.Reader).Size":
cs = append(cs, NewIntIntervalConstraint(NewIntInterval(NewZ(0), PInfinity), ins))
}
}
}
builtin, ok := ins.Common().Value.(*ssa.Builtin)
ops := ins.Operands(nil)
if !ok {
continue
}
switch builtin.Name() {
case "len":
switch op1 := (*ops[1]).Type().Underlying().(type) {
case *types.Basic:
if op1.Kind() == types.String || op1.Kind() == types.UntypedString {
cs = append(cs, NewStringLengthConstraint(*ops[1], ins))
}
case *types.Slice:
cs = append(cs, NewSliceLengthConstraint(*ops[1], ins))
}
case "append":
cs = append(cs, NewSliceAppendConstraint(ins.Common().Args[0], ins.Common().Args[1], ins))
}
case *ssa.BinOp:
ops := ins.Operands(nil)
basic, ok := (*ops[0]).Type().Underlying().(*types.Basic)
if !ok {
continue
}
switch basic.Kind() {
case types.Int, types.Int8, types.Int16, types.Int32, types.Int64,
types.Uint, types.Uint8, types.Uint16, types.Uint32, types.Uint64, types.UntypedInt:
fns := map[token.Token]func(ssa.Value, ssa.Value, ssa.Value) Constraint{
token.ADD: NewIntAddConstraint,
token.SUB: NewIntSubConstraint,
token.MUL: NewIntMulConstraint,
// XXX support QUO, REM, SHL, SHR
}
fn, ok := fns[ins.Op]
if ok {
cs = append(cs, fn(*ops[0], *ops[1], ins))
}
case types.String, types.UntypedString:
if ins.Op == token.ADD {
cs = append(cs, NewStringConcatConstraint(*ops[0], *ops[1], ins))
}
}
case *ssa.Slice:
typ := ins.X.Type().Underlying()
switch typ := typ.(type) {
case *types.Basic:
cs = append(cs, NewStringSliceConstraint(ins.X, ins.Low, ins.High, ins))
case *types.Slice:
cs = append(cs, NewSliceSliceConstraint(ins.X, ins.Low, ins.High, ins))
case *types.Array:
cs = append(cs, NewArraySliceConstraint(ins.X, ins.Low, ins.High, ins))
case *types.Pointer:
if _, ok := typ.Elem().(*types.Array); !ok {
continue
}
cs = append(cs, NewArraySliceConstraint(ins.X, ins.Low, ins.High, ins))
}
case *ssa.Phi:
if !isSupportedType(ins.Type()) {
continue
}
ops := ins.Operands(nil)
dops := make([]ssa.Value, len(ops))
for i, op := range ops {
dops[i] = *op
}
cs = append(cs, NewPhiConstraint(dops, ins))
case *ssa.Sigma:
pred := ins.Block().Preds[0]
instrs := pred.Instrs
cond, ok := instrs[len(instrs)-1].(*ssa.If).Cond.(*ssa.BinOp)
ops := cond.Operands(nil)
if !ok {
continue
}
switch typ := ins.Type().Underlying().(type) {
case *types.Basic:
var c Constraint
switch typ.Kind() {
case types.Int, types.Int8, types.Int16, types.Int32, types.Int64,
types.Uint, types.Uint8, types.Uint16, types.Uint32, types.Uint64, types.UntypedInt:
c = sigmaInteger(g, ins, cond, ops)
case types.String, types.UntypedString:
c = sigmaString(g, ins, cond, ops)
}
if c != nil {
cs = append(cs, c)
}
case *types.Slice:
c := sigmaSlice(g, ins, cond, ops)
if c != nil {
cs = append(cs, c)
}
default:
//log.Printf("unsupported sigma type %T", typ) // XXX
}
case *ssa.MakeChan:
cs = append(cs, NewMakeChannelConstraint(ins.Size, ins))
case *ssa.MakeSlice:
cs = append(cs, NewMakeSliceConstraint(ins.Len, ins))
case *ssa.ChangeType:
switch ins.X.Type().Underlying().(type) {
case *types.Chan:
cs = append(cs, NewChannelChangeTypeConstraint(ins.X, ins))
}
}
}
}
for _, c := range cs {
if c == nil {
panic("nil constraint")
}
// If V is used in constraint C, then we create an edge V->C
for _, op := range c.Operands() {
g.AddEdge(op, c, false)
}
if c, ok := c.(Future); ok {
for _, op := range c.Futures() {
g.AddEdge(op, c, true)
}
}
// If constraint C defines variable V, then we create an edge
// C->V
g.AddEdge(c, c.Y(), false)
}
g.FindSCCs()
g.sccEdges = make([][]Edge, len(g.SCCs))
g.futures = make([][]Future, len(g.SCCs))
for _, e := range g.Edges {
g.sccEdges[e.From.SCC] = append(g.sccEdges[e.From.SCC], e)
if !e.control {
continue
}
if c, ok := e.To.Value.(Future); ok {
g.futures[e.From.SCC] = append(g.futures[e.From.SCC], c)
}
}
return g
}
func (g *Graph) Solve() Ranges {
var consts []Z
off := NewZ(1)
for _, n := range g.Vertices {
if c, ok := n.Value.(*ssa.Const); ok {
basic, ok := c.Type().Underlying().(*types.Basic)
if !ok {
continue
}
if (basic.Info() & types.IsInteger) != 0 {
z := ConstantToZ(c.Value)
consts = append(consts, z)
consts = append(consts, z.Add(off))
consts = append(consts, z.Sub(off))
}
}
}
sort.Sort(Zs(consts))
for scc, vertices := range g.SCCs {
n := 0
n = len(vertices)
if n == 1 {
g.resolveFutures(scc)
v := vertices[0]
if v, ok := v.Value.(ssa.Value); ok {
switch typ := v.Type().Underlying().(type) {
case *types.Basic:
switch typ.Kind() {
case types.String, types.UntypedString:
if !g.Range(v).(StringInterval).IsKnown() {
g.SetRange(v, StringInterval{NewIntInterval(NewZ(0), PInfinity)})
}
default:
if !g.Range(v).(IntInterval).IsKnown() {
g.SetRange(v, InfinityFor(v))
}
}
case *types.Chan:
if !g.Range(v).(ChannelInterval).IsKnown() {
g.SetRange(v, ChannelInterval{NewIntInterval(NewZ(0), PInfinity)})
}
case *types.Slice:
if !g.Range(v).(SliceInterval).IsKnown() {
g.SetRange(v, SliceInterval{NewIntInterval(NewZ(0), PInfinity)})
}
}
}
if c, ok := v.Value.(Constraint); ok {
g.SetRange(c.Y(), c.Eval(g))
}
} else {
uses := g.uses(scc)
entries := g.entries(scc)
for len(entries) > 0 {
v := entries[len(entries)-1]
entries = entries[:len(entries)-1]
for _, use := range uses[v] {
if g.widen(use, consts) {
entries = append(entries, use.Y())
}
}
}
g.resolveFutures(scc)
// XXX this seems to be necessary, but shouldn't be.
// removing it leads to nil pointer derefs; investigate
// where we're not setting values correctly.
for _, n := range vertices {
if v, ok := n.Value.(ssa.Value); ok {
i, ok := g.Range(v).(IntInterval)
if !ok {
continue
}
if !i.IsKnown() {
g.SetRange(v, InfinityFor(v))
}
}
}
actives := g.actives(scc)
for len(actives) > 0 {
v := actives[len(actives)-1]
actives = actives[:len(actives)-1]
for _, use := range uses[v] {
if g.narrow(use) {
actives = append(actives, use.Y())
}
}
}
}
// propagate scc
for _, edge := range g.sccEdges[scc] {
if edge.control {
continue
}
if edge.From.SCC == edge.To.SCC {
continue
}
if c, ok := edge.To.Value.(Constraint); ok {
g.SetRange(c.Y(), c.Eval(g))
}
if c, ok := edge.To.Value.(Future); ok {
if !c.IsKnown() {
c.MarkUnresolved()
}
}
}
}
for v, r := range g.ranges {
i, ok := r.(IntInterval)
if !ok {
continue
}
if (v.Type().Underlying().(*types.Basic).Info() & types.IsUnsigned) == 0 {
if i.Upper != PInfinity {
s := &types.StdSizes{
// XXX is it okay to assume the largest word size, or do we
// need to be platform specific?
WordSize: 8,
MaxAlign: 1,
}
bits := (s.Sizeof(v.Type()) * 8) - 1
n := big.NewInt(1)
n = n.Lsh(n, uint(bits))
upper, lower := &big.Int{}, &big.Int{}
upper.Sub(n, big.NewInt(1))
lower.Neg(n)
if i.Upper.Cmp(NewBigZ(upper)) == 1 {
i = NewIntInterval(NInfinity, PInfinity)
} else if i.Lower.Cmp(NewBigZ(lower)) == -1 {
i = NewIntInterval(NInfinity, PInfinity)
}
}
}
g.ranges[v] = i
}
return g.ranges
}
func VertexString(v *Vertex) string {
switch v := v.Value.(type) {
case Constraint:
return v.String()
case ssa.Value:
return v.Name()
case nil:
return "BUG: nil vertex value"
default:
panic(fmt.Sprintf("unexpected type %T", v))
}
}
type Vertex struct {
Value interface{} // one of Constraint or ssa.Value
SCC int
index int
lowlink int
stack bool
Succs []Edge
}
type Ranges map[ssa.Value]Range
func (r Ranges) Get(x ssa.Value) Range {
if x == nil {
return nil
}
i, ok := r[x]
if !ok {
switch x := x.Type().Underlying().(type) {
case *types.Basic:
switch x.Kind() {
case types.String, types.UntypedString:
return StringInterval{}
default:
return IntInterval{}
}
case *types.Chan:
return ChannelInterval{}
case *types.Slice:
return SliceInterval{}
}
}
return i
}
type Graph struct {
Vertices map[interface{}]*Vertex
Edges []Edge
SCCs [][]*Vertex
ranges Ranges
// map SCCs to futures
futures [][]Future
// map SCCs to edges
sccEdges [][]Edge
}
func (g Graph) Graphviz() string {
var lines []string
lines = append(lines, "digraph{")
ids := map[interface{}]int{}
i := 1
for _, v := range g.Vertices {
ids[v] = i
shape := "box"
if _, ok := v.Value.(ssa.Value); ok {
shape = "oval"
}
lines = append(lines, fmt.Sprintf(`n%d [shape="%s", label=%q, colorscheme=spectral11, style="filled", fillcolor="%d"]`,
i, shape, VertexString(v), (v.SCC%11)+1))
i++
}
for _, e := range g.Edges {
style := "solid"
if e.control {
style = "dashed"
}
lines = append(lines, fmt.Sprintf(`n%d -> n%d [style="%s"]`, ids[e.From], ids[e.To], style))
}
lines = append(lines, "}")
return strings.Join(lines, "\n")
}
func (g *Graph) SetRange(x ssa.Value, r Range) {
g.ranges[x] = r
}
func (g *Graph) Range(x ssa.Value) Range {
return g.ranges.Get(x)
}
func (g *Graph) widen(c Constraint, consts []Z) bool {
setRange := func(i Range) {
g.SetRange(c.Y(), i)
}
widenIntInterval := func(oi, ni IntInterval) (IntInterval, bool) {
if !ni.IsKnown() {
return oi, false
}
nlc := NInfinity
nuc := PInfinity
for _, co := range consts {
if co.Cmp(ni.Lower) <= 0 {
nlc = co
break
}
}
for _, co := range consts {
if co.Cmp(ni.Upper) >= 0 {
nuc = co
break
}
}
if !oi.IsKnown() {
return ni, true
}
if ni.Lower.Cmp(oi.Lower) == -1 && ni.Upper.Cmp(oi.Upper) == 1 {
return NewIntInterval(nlc, nuc), true
}
if ni.Lower.Cmp(oi.Lower) == -1 {
return NewIntInterval(nlc, oi.Upper), true
}
if ni.Upper.Cmp(oi.Upper) == 1 {
return NewIntInterval(oi.Lower, nuc), true
}
return oi, false
}
switch oi := g.Range(c.Y()).(type) {
case IntInterval:
ni := c.Eval(g).(IntInterval)
si, changed := widenIntInterval(oi, ni)
if changed {
setRange(si)
return true
}
return false
case StringInterval:
ni := c.Eval(g).(StringInterval)
si, changed := widenIntInterval(oi.Length, ni.Length)
if changed {
setRange(StringInterval{si})
return true
}
return false
case SliceInterval:
ni := c.Eval(g).(SliceInterval)
si, changed := widenIntInterval(oi.Length, ni.Length)
if changed {
setRange(SliceInterval{si})
return true
}
return false
default:
return false
}
}
func (g *Graph) narrow(c Constraint) bool {
narrowIntInterval := func(oi, ni IntInterval) (IntInterval, bool) {
oLower := oi.Lower
oUpper := oi.Upper
nLower := ni.Lower
nUpper := ni.Upper
if oLower == NInfinity && nLower != NInfinity {
return NewIntInterval(nLower, oUpper), true
}
if oUpper == PInfinity && nUpper != PInfinity {
return NewIntInterval(oLower, nUpper), true
}
if oLower.Cmp(nLower) == 1 {
return NewIntInterval(nLower, oUpper), true
}
if oUpper.Cmp(nUpper) == -1 {
return NewIntInterval(oLower, nUpper), true
}
return oi, false
}
switch oi := g.Range(c.Y()).(type) {
case IntInterval:
ni := c.Eval(g).(IntInterval)
si, changed := narrowIntInterval(oi, ni)
if changed {
g.SetRange(c.Y(), si)
return true
}
return false
case StringInterval:
ni := c.Eval(g).(StringInterval)
si, changed := narrowIntInterval(oi.Length, ni.Length)
if changed {
g.SetRange(c.Y(), StringInterval{si})
return true
}
return false
case SliceInterval:
ni := c.Eval(g).(SliceInterval)
si, changed := narrowIntInterval(oi.Length, ni.Length)
if changed {
g.SetRange(c.Y(), SliceInterval{si})
return true
}
return false
default:
return false
}
}
func (g *Graph) resolveFutures(scc int) {
for _, c := range g.futures[scc] {
c.Resolve()
}
}
func (g *Graph) entries(scc int) []ssa.Value {
var entries []ssa.Value
for _, n := range g.Vertices {
if n.SCC != scc {
continue
}
if v, ok := n.Value.(ssa.Value); ok {
// XXX avoid quadratic runtime
//
// XXX I cannot think of any code where the future and its
// variables aren't in the same SCC, in which case this
// code isn't very useful (the variables won't be resolved
// yet). Before we have a cross-SCC example, however, we
// can't really verify that this code is working
// correctly, or indeed doing anything useful.
for _, on := range g.Vertices {
if c, ok := on.Value.(Future); ok {
if c.Y() == v {
if !c.IsResolved() {
g.SetRange(c.Y(), c.Eval(g))
c.MarkResolved()
}
break
}
}
}
if g.Range(v).IsKnown() {
entries = append(entries, v)
}
}
}
return entries
}
func (g *Graph) uses(scc int) map[ssa.Value][]Constraint {
m := map[ssa.Value][]Constraint{}
for _, e := range g.sccEdges[scc] {
if e.control {
continue
}
if v, ok := e.From.Value.(ssa.Value); ok {
c := e.To.Value.(Constraint)
sink := c.Y()
if g.Vertices[sink].SCC == scc {
m[v] = append(m[v], c)
}
}
}
return m
}
func (g *Graph) actives(scc int) []ssa.Value {
var actives []ssa.Value
for _, n := range g.Vertices {
if n.SCC != scc {
continue
}
if v, ok := n.Value.(ssa.Value); ok {
if _, ok := v.(*ssa.Const); !ok {
actives = append(actives, v)
}
}
}
return actives
}
func (g *Graph) AddEdge(from, to interface{}, ctrl bool) {
vf, ok := g.Vertices[from]
if !ok {
vf = &Vertex{Value: from}
g.Vertices[from] = vf
}
vt, ok := g.Vertices[to]
if !ok {
vt = &Vertex{Value: to}
g.Vertices[to] = vt
}
e := Edge{From: vf, To: vt, control: ctrl}
g.Edges = append(g.Edges, e)
vf.Succs = append(vf.Succs, e)
}
type Edge struct {
From, To *Vertex
control bool
}
func (e Edge) String() string {
return fmt.Sprintf("%s -> %s", VertexString(e.From), VertexString(e.To))
}
func (g *Graph) FindSCCs() {
// use Tarjan to find the SCCs
index := 1
var s []*Vertex
scc := 0
var strongconnect func(v *Vertex)
strongconnect = func(v *Vertex) {
// set the depth index for v to the smallest unused index
v.index = index
v.lowlink = index
index++
s = append(s, v)
v.stack = true
for _, e := range v.Succs {
w := e.To
if w.index == 0 {
// successor w has not yet been visited; recurse on it
strongconnect(w)
if w.lowlink < v.lowlink {
v.lowlink = w.lowlink
}
} else if w.stack {
// successor w is in stack s and hence in the current scc
if w.index < v.lowlink {
v.lowlink = w.index
}
}
}
if v.lowlink == v.index {
for {
w := s[len(s)-1]
s = s[:len(s)-1]
w.stack = false
w.SCC = scc
if w == v {
break
}
}
scc++
}
}
for _, v := range g.Vertices {
if v.index == 0 {
strongconnect(v)
}
}
g.SCCs = make([][]*Vertex, scc)
for _, n := range g.Vertices {
n.SCC = scc - n.SCC - 1
g.SCCs[n.SCC] = append(g.SCCs[n.SCC], n)
}
}
func invertToken(tok token.Token) token.Token {
switch tok {
case token.LSS:
return token.GEQ
case token.GTR:
return token.LEQ
case token.EQL:
return token.NEQ
case token.NEQ:
return token.EQL
case token.GEQ:
return token.LSS
case token.LEQ:
return token.GTR
default:
panic(fmt.Sprintf("unsupported token %s", tok))
}
}
func flipToken(tok token.Token) token.Token {
switch tok {
case token.LSS:
return token.GTR
case token.GTR:
return token.LSS
case token.EQL:
return token.EQL
case token.NEQ:
return token.NEQ
case token.GEQ:
return token.LEQ
case token.LEQ:
return token.GEQ
default:
panic(fmt.Sprintf("unsupported token %s", tok))
}
}
type CopyConstraint struct {
aConstraint
X ssa.Value
}
func (c *CopyConstraint) String() string {
return fmt.Sprintf("%s = copy(%s)", c.Y().Name(), c.X.Name())
}
func (c *CopyConstraint) Eval(g *Graph) Range {
return g.Range(c.X)
}
func (c *CopyConstraint) Operands() []ssa.Value {
return []ssa.Value{c.X}
}
func NewCopyConstraint(x, y ssa.Value) Constraint {
return &CopyConstraint{
aConstraint: aConstraint{
y: y,
},
X: x,
}
}