vikunja-api/vendor/honnef.co/go/tools/staticcheck/lint.go

2791 lines
67 KiB
Go
Raw Normal View History

2018-12-31 02:18:41 +01:00
// Package staticcheck contains a linter for Go source code.
package staticcheck // import "honnef.co/go/tools/staticcheck"
import (
"fmt"
"go/ast"
"go/constant"
"go/token"
"go/types"
htmltemplate "html/template"
"net/http"
"regexp"
"regexp/syntax"
"sort"
"strconv"
"strings"
"sync"
texttemplate "text/template"
"honnef.co/go/tools/deprecated"
"honnef.co/go/tools/functions"
"honnef.co/go/tools/internal/sharedcheck"
"honnef.co/go/tools/lint"
. "honnef.co/go/tools/lint/lintdsl"
"honnef.co/go/tools/ssa"
"honnef.co/go/tools/staticcheck/vrp"
"golang.org/x/tools/go/ast/astutil"
"golang.org/x/tools/go/loader"
)
func validRegexp(call *Call) {
arg := call.Args[0]
err := ValidateRegexp(arg.Value)
if err != nil {
arg.Invalid(err.Error())
}
}
type runeSlice []rune
func (rs runeSlice) Len() int { return len(rs) }
func (rs runeSlice) Less(i int, j int) bool { return rs[i] < rs[j] }
func (rs runeSlice) Swap(i int, j int) { rs[i], rs[j] = rs[j], rs[i] }
func utf8Cutset(call *Call) {
arg := call.Args[1]
if InvalidUTF8(arg.Value) {
arg.Invalid(MsgInvalidUTF8)
}
}
func uniqueCutset(call *Call) {
arg := call.Args[1]
if !UniqueStringCutset(arg.Value) {
arg.Invalid(MsgNonUniqueCutset)
}
}
func unmarshalPointer(name string, arg int) CallCheck {
return func(call *Call) {
if !Pointer(call.Args[arg].Value) {
call.Args[arg].Invalid(fmt.Sprintf("%s expects to unmarshal into a pointer, but the provided value is not a pointer", name))
}
}
}
func pointlessIntMath(call *Call) {
if ConvertedFromInt(call.Args[0].Value) {
call.Invalid(fmt.Sprintf("calling %s on a converted integer is pointless", CallName(call.Instr.Common())))
}
}
func checkValidHostPort(arg int) CallCheck {
return func(call *Call) {
if !ValidHostPort(call.Args[arg].Value) {
call.Args[arg].Invalid(MsgInvalidHostPort)
}
}
}
var (
checkRegexpRules = map[string]CallCheck{
"regexp.MustCompile": validRegexp,
"regexp.Compile": validRegexp,
"regexp.Match": validRegexp,
"regexp.MatchReader": validRegexp,
"regexp.MatchString": validRegexp,
}
checkTimeParseRules = map[string]CallCheck{
"time.Parse": func(call *Call) {
arg := call.Args[0]
err := ValidateTimeLayout(arg.Value)
if err != nil {
arg.Invalid(err.Error())
}
},
}
checkEncodingBinaryRules = map[string]CallCheck{
"encoding/binary.Write": func(call *Call) {
arg := call.Args[2]
if !CanBinaryMarshal(call.Job, arg.Value) {
arg.Invalid(fmt.Sprintf("value of type %s cannot be used with binary.Write", arg.Value.Value.Type()))
}
},
}
checkURLsRules = map[string]CallCheck{
"net/url.Parse": func(call *Call) {
arg := call.Args[0]
err := ValidateURL(arg.Value)
if err != nil {
arg.Invalid(err.Error())
}
},
}
checkSyncPoolValueRules = map[string]CallCheck{
"(*sync.Pool).Put": func(call *Call) {
arg := call.Args[0]
typ := arg.Value.Value.Type()
if !IsPointerLike(typ) {
arg.Invalid("argument should be pointer-like to avoid allocations")
}
},
}
checkRegexpFindAllRules = map[string]CallCheck{
"(*regexp.Regexp).FindAll": RepeatZeroTimes("a FindAll method", 1),
"(*regexp.Regexp).FindAllIndex": RepeatZeroTimes("a FindAll method", 1),
"(*regexp.Regexp).FindAllString": RepeatZeroTimes("a FindAll method", 1),
"(*regexp.Regexp).FindAllStringIndex": RepeatZeroTimes("a FindAll method", 1),
"(*regexp.Regexp).FindAllStringSubmatch": RepeatZeroTimes("a FindAll method", 1),
"(*regexp.Regexp).FindAllStringSubmatchIndex": RepeatZeroTimes("a FindAll method", 1),
"(*regexp.Regexp).FindAllSubmatch": RepeatZeroTimes("a FindAll method", 1),
"(*regexp.Regexp).FindAllSubmatchIndex": RepeatZeroTimes("a FindAll method", 1),
}
checkUTF8CutsetRules = map[string]CallCheck{
"strings.IndexAny": utf8Cutset,
"strings.LastIndexAny": utf8Cutset,
"strings.ContainsAny": utf8Cutset,
"strings.Trim": utf8Cutset,
"strings.TrimLeft": utf8Cutset,
"strings.TrimRight": utf8Cutset,
}
checkUniqueCutsetRules = map[string]CallCheck{
"strings.Trim": uniqueCutset,
"strings.TrimLeft": uniqueCutset,
"strings.TrimRight": uniqueCutset,
}
checkUnmarshalPointerRules = map[string]CallCheck{
"encoding/xml.Unmarshal": unmarshalPointer("xml.Unmarshal", 1),
"(*encoding/xml.Decoder).Decode": unmarshalPointer("Decode", 0),
"(*encoding/xml.Decoder).DecodeElement": unmarshalPointer("DecodeElement", 0),
"encoding/json.Unmarshal": unmarshalPointer("json.Unmarshal", 1),
"(*encoding/json.Decoder).Decode": unmarshalPointer("Decode", 0),
}
checkUnbufferedSignalChanRules = map[string]CallCheck{
"os/signal.Notify": func(call *Call) {
arg := call.Args[0]
if UnbufferedChannel(arg.Value) {
arg.Invalid("the channel used with signal.Notify should be buffered")
}
},
}
checkMathIntRules = map[string]CallCheck{
"math.Ceil": pointlessIntMath,
"math.Floor": pointlessIntMath,
"math.IsNaN": pointlessIntMath,
"math.Trunc": pointlessIntMath,
"math.IsInf": pointlessIntMath,
}
checkStringsReplaceZeroRules = map[string]CallCheck{
"strings.Replace": RepeatZeroTimes("strings.Replace", 3),
"bytes.Replace": RepeatZeroTimes("bytes.Replace", 3),
}
checkListenAddressRules = map[string]CallCheck{
"net/http.ListenAndServe": checkValidHostPort(0),
"net/http.ListenAndServeTLS": checkValidHostPort(0),
}
checkBytesEqualIPRules = map[string]CallCheck{
"bytes.Equal": func(call *Call) {
if ConvertedFrom(call.Args[0].Value, "net.IP") && ConvertedFrom(call.Args[1].Value, "net.IP") {
call.Invalid("use net.IP.Equal to compare net.IPs, not bytes.Equal")
}
},
}
checkRegexpMatchLoopRules = map[string]CallCheck{
"regexp.Match": loopedRegexp("regexp.Match"),
"regexp.MatchReader": loopedRegexp("regexp.MatchReader"),
"regexp.MatchString": loopedRegexp("regexp.MatchString"),
}
)
type Checker struct {
CheckGenerated bool
funcDescs *functions.Descriptions
deprecatedObjs map[types.Object]string
}
func NewChecker() *Checker {
return &Checker{}
}
func (*Checker) Name() string { return "staticcheck" }
func (*Checker) Prefix() string { return "SA" }
func (c *Checker) Funcs() map[string]lint.Func {
return map[string]lint.Func{
"SA1000": c.callChecker(checkRegexpRules),
"SA1001": c.CheckTemplate,
"SA1002": c.callChecker(checkTimeParseRules),
"SA1003": c.callChecker(checkEncodingBinaryRules),
"SA1004": c.CheckTimeSleepConstant,
"SA1005": c.CheckExec,
"SA1006": c.CheckUnsafePrintf,
"SA1007": c.callChecker(checkURLsRules),
"SA1008": c.CheckCanonicalHeaderKey,
"SA1009": nil,
"SA1010": c.callChecker(checkRegexpFindAllRules),
"SA1011": c.callChecker(checkUTF8CutsetRules),
"SA1012": c.CheckNilContext,
"SA1013": c.CheckSeeker,
"SA1014": c.callChecker(checkUnmarshalPointerRules),
"SA1015": c.CheckLeakyTimeTick,
"SA1016": c.CheckUntrappableSignal,
"SA1017": c.callChecker(checkUnbufferedSignalChanRules),
"SA1018": c.callChecker(checkStringsReplaceZeroRules),
"SA1019": c.CheckDeprecated,
"SA1020": c.callChecker(checkListenAddressRules),
"SA1021": c.callChecker(checkBytesEqualIPRules),
"SA1022": nil,
"SA1023": c.CheckWriterBufferModified,
"SA1024": c.callChecker(checkUniqueCutsetRules),
"SA2000": c.CheckWaitgroupAdd,
"SA2001": c.CheckEmptyCriticalSection,
"SA2002": c.CheckConcurrentTesting,
"SA2003": c.CheckDeferLock,
"SA3000": c.CheckTestMainExit,
"SA3001": c.CheckBenchmarkN,
"SA4000": c.CheckLhsRhsIdentical,
"SA4001": c.CheckIneffectiveCopy,
"SA4002": c.CheckDiffSizeComparison,
"SA4003": c.CheckUnsignedComparison,
"SA4004": c.CheckIneffectiveLoop,
"SA4005": nil,
"SA4006": c.CheckUnreadVariableValues,
// "SA4007": c.CheckPredeterminedBooleanExprs,
"SA4007": nil,
"SA4008": c.CheckLoopCondition,
"SA4009": c.CheckArgOverwritten,
"SA4010": c.CheckIneffectiveAppend,
"SA4011": c.CheckScopedBreak,
"SA4012": c.CheckNaNComparison,
"SA4013": c.CheckDoubleNegation,
"SA4014": c.CheckRepeatedIfElse,
"SA4015": c.callChecker(checkMathIntRules),
"SA4016": c.CheckSillyBitwiseOps,
"SA4017": c.CheckPureFunctions,
"SA4018": c.CheckSelfAssignment,
"SA4019": c.CheckDuplicateBuildConstraints,
"SA5000": c.CheckNilMaps,
"SA5001": c.CheckEarlyDefer,
"SA5002": c.CheckInfiniteEmptyLoop,
"SA5003": c.CheckDeferInInfiniteLoop,
"SA5004": c.CheckLoopEmptyDefault,
"SA5005": c.CheckCyclicFinalizer,
// "SA5006": c.CheckSliceOutOfBounds,
"SA5007": c.CheckInfiniteRecursion,
"SA6000": c.callChecker(checkRegexpMatchLoopRules),
"SA6001": c.CheckMapBytesKey,
"SA6002": c.callChecker(checkSyncPoolValueRules),
"SA6003": c.CheckRangeStringRunes,
"SA6004": c.CheckSillyRegexp,
"SA9000": nil,
"SA9001": c.CheckDubiousDeferInChannelRangeLoop,
"SA9002": c.CheckNonOctalFileMode,
"SA9003": c.CheckEmptyBranch,
"SA9004": c.CheckMissingEnumTypesInDeclaration,
}
}
func (c *Checker) filterGenerated(files []*ast.File) []*ast.File {
if c.CheckGenerated {
return files
}
var out []*ast.File
for _, f := range files {
if !IsGenerated(f) {
out = append(out, f)
}
}
return out
}
func (c *Checker) findDeprecated(prog *lint.Program) {
var docs []*ast.CommentGroup
var names []*ast.Ident
doDocs := func(pkginfo *loader.PackageInfo, names []*ast.Ident, docs []*ast.CommentGroup) {
var alt string
for _, doc := range docs {
if doc == nil {
continue
}
parts := strings.Split(doc.Text(), "\n\n")
last := parts[len(parts)-1]
if !strings.HasPrefix(last, "Deprecated: ") {
continue
}
alt = last[len("Deprecated: "):]
alt = strings.Replace(alt, "\n", " ", -1)
break
}
if alt == "" {
return
}
for _, name := range names {
obj := pkginfo.ObjectOf(name)
c.deprecatedObjs[obj] = alt
}
}
for _, pkginfo := range prog.Prog.AllPackages {
for _, f := range pkginfo.Files {
fn := func(node ast.Node) bool {
if node == nil {
return true
}
var ret bool
switch node := node.(type) {
case *ast.GenDecl:
switch node.Tok {
case token.TYPE, token.CONST, token.VAR:
docs = append(docs, node.Doc)
return true
default:
return false
}
case *ast.FuncDecl:
docs = append(docs, node.Doc)
names = []*ast.Ident{node.Name}
ret = false
case *ast.TypeSpec:
docs = append(docs, node.Doc)
names = []*ast.Ident{node.Name}
ret = true
case *ast.ValueSpec:
docs = append(docs, node.Doc)
names = node.Names
ret = false
case *ast.File:
return true
case *ast.StructType:
for _, field := range node.Fields.List {
doDocs(pkginfo, field.Names, []*ast.CommentGroup{field.Doc})
}
return false
case *ast.InterfaceType:
for _, field := range node.Methods.List {
doDocs(pkginfo, field.Names, []*ast.CommentGroup{field.Doc})
}
return false
default:
return false
}
if len(names) == 0 || len(docs) == 0 {
return ret
}
doDocs(pkginfo, names, docs)
docs = docs[:0]
names = nil
return ret
}
ast.Inspect(f, fn)
}
}
}
func (c *Checker) Init(prog *lint.Program) {
wg := &sync.WaitGroup{}
wg.Add(2)
go func() {
c.funcDescs = functions.NewDescriptions(prog.SSA)
for _, fn := range prog.AllFunctions {
if fn.Blocks != nil {
applyStdlibKnowledge(fn)
ssa.OptimizeBlocks(fn)
}
}
wg.Done()
}()
go func() {
c.deprecatedObjs = map[types.Object]string{}
c.findDeprecated(prog)
wg.Done()
}()
wg.Wait()
}
func (c *Checker) isInLoop(b *ssa.BasicBlock) bool {
sets := c.funcDescs.Get(b.Parent()).Loops
for _, set := range sets {
if set[b] {
return true
}
}
return false
}
func applyStdlibKnowledge(fn *ssa.Function) {
if len(fn.Blocks) == 0 {
return
}
// comma-ok receiving from a time.Tick channel will never return
// ok == false, so any branching on the value of ok can be
// replaced with an unconditional jump. This will primarily match
// `for range time.Tick(x)` loops, but it can also match
// user-written code.
for _, block := range fn.Blocks {
if len(block.Instrs) < 3 {
continue
}
if len(block.Succs) != 2 {
continue
}
var instrs []*ssa.Instruction
for i, ins := range block.Instrs {
if _, ok := ins.(*ssa.DebugRef); ok {
continue
}
instrs = append(instrs, &block.Instrs[i])
}
for i, ins := range instrs {
unop, ok := (*ins).(*ssa.UnOp)
if !ok || unop.Op != token.ARROW {
continue
}
call, ok := unop.X.(*ssa.Call)
if !ok {
continue
}
if !IsCallTo(call.Common(), "time.Tick") {
continue
}
ex, ok := (*instrs[i+1]).(*ssa.Extract)
if !ok || ex.Tuple != unop || ex.Index != 1 {
continue
}
ifstmt, ok := (*instrs[i+2]).(*ssa.If)
if !ok || ifstmt.Cond != ex {
continue
}
*instrs[i+2] = ssa.NewJump(block)
succ := block.Succs[1]
block.Succs = block.Succs[0:1]
succ.RemovePred(block)
}
}
}
func hasType(j *lint.Job, expr ast.Expr, name string) bool {
T := TypeOf(j, expr)
return IsType(T, name)
}
func (c *Checker) CheckUntrappableSignal(j *lint.Job) {
fn := func(node ast.Node) bool {
call, ok := node.(*ast.CallExpr)
if !ok {
return true
}
if !IsCallToAnyAST(j, call,
"os/signal.Ignore", "os/signal.Notify", "os/signal.Reset") {
return true
}
for _, arg := range call.Args {
if conv, ok := arg.(*ast.CallExpr); ok && isName(j, conv.Fun, "os.Signal") {
arg = conv.Args[0]
}
if isName(j, arg, "os.Kill") || isName(j, arg, "syscall.SIGKILL") {
j.Errorf(arg, "%s cannot be trapped (did you mean syscall.SIGTERM?)", Render(j, arg))
}
if isName(j, arg, "syscall.SIGSTOP") {
j.Errorf(arg, "%s signal cannot be trapped", Render(j, arg))
}
}
return true
}
for _, f := range j.Program.Files {
ast.Inspect(f, fn)
}
}
func (c *Checker) CheckTemplate(j *lint.Job) {
fn := func(node ast.Node) bool {
call, ok := node.(*ast.CallExpr)
if !ok {
return true
}
var kind string
if IsCallToAST(j, call, "(*text/template.Template).Parse") {
kind = "text"
} else if IsCallToAST(j, call, "(*html/template.Template).Parse") {
kind = "html"
} else {
return true
}
sel := call.Fun.(*ast.SelectorExpr)
if !IsCallToAST(j, sel.X, "text/template.New") &&
!IsCallToAST(j, sel.X, "html/template.New") {
// TODO(dh): this is a cheap workaround for templates with
// different delims. A better solution with less false
// negatives would use data flow analysis to see where the
// template comes from and where it has been
return true
}
s, ok := ExprToString(j, call.Args[0])
if !ok {
return true
}
var err error
switch kind {
case "text":
_, err = texttemplate.New("").Parse(s)
case "html":
_, err = htmltemplate.New("").Parse(s)
}
if err != nil {
// TODO(dominikh): whitelist other parse errors, if any
if strings.Contains(err.Error(), "unexpected") {
j.Errorf(call.Args[0], "%s", err)
}
}
return true
}
for _, f := range j.Program.Files {
ast.Inspect(f, fn)
}
}
func (c *Checker) CheckTimeSleepConstant(j *lint.Job) {
fn := func(node ast.Node) bool {
call, ok := node.(*ast.CallExpr)
if !ok {
return true
}
if !IsCallToAST(j, call, "time.Sleep") {
return true
}
lit, ok := call.Args[0].(*ast.BasicLit)
if !ok {
return true
}
n, err := strconv.Atoi(lit.Value)
if err != nil {
return true
}
if n == 0 || n > 120 {
// time.Sleep(0) is a seldom used pattern in concurrency
// tests. >120 might be intentional. 120 was chosen
// because the user could've meant 2 minutes.
return true
}
recommendation := "time.Sleep(time.Nanosecond)"
if n != 1 {
recommendation = fmt.Sprintf("time.Sleep(%d * time.Nanosecond)", n)
}
j.Errorf(call.Args[0], "sleeping for %d nanoseconds is probably a bug. Be explicit if it isn't: %s", n, recommendation)
return true
}
for _, f := range j.Program.Files {
ast.Inspect(f, fn)
}
}
func (c *Checker) CheckWaitgroupAdd(j *lint.Job) {
fn := func(node ast.Node) bool {
g, ok := node.(*ast.GoStmt)
if !ok {
return true
}
fun, ok := g.Call.Fun.(*ast.FuncLit)
if !ok {
return true
}
if len(fun.Body.List) == 0 {
return true
}
stmt, ok := fun.Body.List[0].(*ast.ExprStmt)
if !ok {
return true
}
call, ok := stmt.X.(*ast.CallExpr)
if !ok {
return true
}
sel, ok := call.Fun.(*ast.SelectorExpr)
if !ok {
return true
}
fn, ok := ObjectOf(j, sel.Sel).(*types.Func)
if !ok {
return true
}
if fn.FullName() == "(*sync.WaitGroup).Add" {
j.Errorf(sel, "should call %s before starting the goroutine to avoid a race",
Render(j, stmt))
}
return true
}
for _, f := range j.Program.Files {
ast.Inspect(f, fn)
}
}
func (c *Checker) CheckInfiniteEmptyLoop(j *lint.Job) {
fn := func(node ast.Node) bool {
loop, ok := node.(*ast.ForStmt)
if !ok || len(loop.Body.List) != 0 || loop.Post != nil {
return true
}
if loop.Init != nil {
// TODO(dh): this isn't strictly necessary, it just makes
// the check easier.
return true
}
// An empty loop is bad news in two cases: 1) The loop has no
// condition. In that case, it's just a loop that spins
// forever and as fast as it can, keeping a core busy. 2) The
// loop condition only consists of variable or field reads and
// operators on those. The only way those could change their
// value is with unsynchronised access, which constitutes a
// data race.
//
// If the condition contains any function calls, its behaviour
// is dynamic and the loop might terminate. Similarly for
// channel receives.
if loop.Cond != nil && hasSideEffects(loop.Cond) {
return true
}
j.Errorf(loop, "this loop will spin, using 100%% CPU")
if loop.Cond != nil {
j.Errorf(loop, "loop condition never changes or has a race condition")
}
return true
}
for _, f := range j.Program.Files {
ast.Inspect(f, fn)
}
}
func (c *Checker) CheckDeferInInfiniteLoop(j *lint.Job) {
fn := func(node ast.Node) bool {
mightExit := false
var defers []ast.Stmt
loop, ok := node.(*ast.ForStmt)
if !ok || loop.Cond != nil {
return true
}
fn2 := func(node ast.Node) bool {
switch stmt := node.(type) {
case *ast.ReturnStmt:
mightExit = true
case *ast.BranchStmt:
// TODO(dominikh): if this sees a break in a switch or
// select, it doesn't check if it breaks the loop or
// just the select/switch. This causes some false
// negatives.
if stmt.Tok == token.BREAK {
mightExit = true
}
case *ast.DeferStmt:
defers = append(defers, stmt)
case *ast.FuncLit:
// Don't look into function bodies
return false
}
return true
}
ast.Inspect(loop.Body, fn2)
if mightExit {
return true
}
for _, stmt := range defers {
j.Errorf(stmt, "defers in this infinite loop will never run")
}
return true
}
for _, f := range j.Program.Files {
ast.Inspect(f, fn)
}
}
func (c *Checker) CheckDubiousDeferInChannelRangeLoop(j *lint.Job) {
fn := func(node ast.Node) bool {
loop, ok := node.(*ast.RangeStmt)
if !ok {
return true
}
typ := TypeOf(j, loop.X)
_, ok = typ.Underlying().(*types.Chan)
if !ok {
return true
}
fn2 := func(node ast.Node) bool {
switch stmt := node.(type) {
case *ast.DeferStmt:
j.Errorf(stmt, "defers in this range loop won't run unless the channel gets closed")
case *ast.FuncLit:
// Don't look into function bodies
return false
}
return true
}
ast.Inspect(loop.Body, fn2)
return true
}
for _, f := range j.Program.Files {
ast.Inspect(f, fn)
}
}
func (c *Checker) CheckTestMainExit(j *lint.Job) {
fn := func(node ast.Node) bool {
if !isTestMain(j, node) {
return true
}
arg := ObjectOf(j, node.(*ast.FuncDecl).Type.Params.List[0].Names[0])
callsRun := false
fn2 := func(node ast.Node) bool {
call, ok := node.(*ast.CallExpr)
if !ok {
return true
}
sel, ok := call.Fun.(*ast.SelectorExpr)
if !ok {
return true
}
ident, ok := sel.X.(*ast.Ident)
if !ok {
return true
}
if arg != ObjectOf(j, ident) {
return true
}
if sel.Sel.Name == "Run" {
callsRun = true
return false
}
return true
}
ast.Inspect(node.(*ast.FuncDecl).Body, fn2)
callsExit := false
fn3 := func(node ast.Node) bool {
if IsCallToAST(j, node, "os.Exit") {
callsExit = true
return false
}
return true
}
ast.Inspect(node.(*ast.FuncDecl).Body, fn3)
if !callsExit && callsRun {
j.Errorf(node, "TestMain should call os.Exit to set exit code")
}
return true
}
for _, f := range j.Program.Files {
ast.Inspect(f, fn)
}
}
func isTestMain(j *lint.Job, node ast.Node) bool {
decl, ok := node.(*ast.FuncDecl)
if !ok {
return false
}
if decl.Name.Name != "TestMain" {
return false
}
if len(decl.Type.Params.List) != 1 {
return false
}
arg := decl.Type.Params.List[0]
if len(arg.Names) != 1 {
return false
}
return IsOfType(j, arg.Type, "*testing.M")
}
func (c *Checker) CheckExec(j *lint.Job) {
fn := func(node ast.Node) bool {
call, ok := node.(*ast.CallExpr)
if !ok {
return true
}
if !IsCallToAST(j, call, "os/exec.Command") {
return true
}
val, ok := ExprToString(j, call.Args[0])
if !ok {
return true
}
if !strings.Contains(val, " ") || strings.Contains(val, `\`) || strings.Contains(val, "/") {
return true
}
j.Errorf(call.Args[0], "first argument to exec.Command looks like a shell command, but a program name or path are expected")
return true
}
for _, f := range j.Program.Files {
ast.Inspect(f, fn)
}
}
func (c *Checker) CheckLoopEmptyDefault(j *lint.Job) {
fn := func(node ast.Node) bool {
loop, ok := node.(*ast.ForStmt)
if !ok || len(loop.Body.List) != 1 || loop.Cond != nil || loop.Init != nil {
return true
}
sel, ok := loop.Body.List[0].(*ast.SelectStmt)
if !ok {
return true
}
for _, c := range sel.Body.List {
if comm, ok := c.(*ast.CommClause); ok && comm.Comm == nil && len(comm.Body) == 0 {
j.Errorf(comm, "should not have an empty default case in a for+select loop. The loop will spin.")
}
}
return true
}
for _, f := range j.Program.Files {
ast.Inspect(f, fn)
}
}
func (c *Checker) CheckLhsRhsIdentical(j *lint.Job) {
fn := func(node ast.Node) bool {
op, ok := node.(*ast.BinaryExpr)
if !ok {
return true
}
switch op.Op {
case token.EQL, token.NEQ:
if basic, ok := TypeOf(j, op.X).(*types.Basic); ok {
if kind := basic.Kind(); kind == types.Float32 || kind == types.Float64 {
// f == f and f != f might be used to check for NaN
return true
}
}
case token.SUB, token.QUO, token.AND, token.REM, token.OR, token.XOR, token.AND_NOT,
token.LAND, token.LOR, token.LSS, token.GTR, token.LEQ, token.GEQ:
default:
// For some ops, such as + and *, it can make sense to
// have identical operands
return true
}
if Render(j, op.X) != Render(j, op.Y) {
return true
}
j.Errorf(op, "identical expressions on the left and right side of the '%s' operator", op.Op)
return true
}
for _, f := range j.Program.Files {
ast.Inspect(f, fn)
}
}
func (c *Checker) CheckScopedBreak(j *lint.Job) {
fn := func(node ast.Node) bool {
var body *ast.BlockStmt
switch node := node.(type) {
case *ast.ForStmt:
body = node.Body
case *ast.RangeStmt:
body = node.Body
default:
return true
}
for _, stmt := range body.List {
var blocks [][]ast.Stmt
switch stmt := stmt.(type) {
case *ast.SwitchStmt:
for _, c := range stmt.Body.List {
blocks = append(blocks, c.(*ast.CaseClause).Body)
}
case *ast.SelectStmt:
for _, c := range stmt.Body.List {
blocks = append(blocks, c.(*ast.CommClause).Body)
}
default:
continue
}
for _, body := range blocks {
if len(body) == 0 {
continue
}
lasts := []ast.Stmt{body[len(body)-1]}
// TODO(dh): unfold all levels of nested block
// statements, not just a single level if statement
if ifs, ok := lasts[0].(*ast.IfStmt); ok {
if len(ifs.Body.List) == 0 {
continue
}
lasts[0] = ifs.Body.List[len(ifs.Body.List)-1]
if block, ok := ifs.Else.(*ast.BlockStmt); ok {
if len(block.List) != 0 {
lasts = append(lasts, block.List[len(block.List)-1])
}
}
}
for _, last := range lasts {
branch, ok := last.(*ast.BranchStmt)
if !ok || branch.Tok != token.BREAK || branch.Label != nil {
continue
}
j.Errorf(branch, "ineffective break statement. Did you mean to break out of the outer loop?")
}
}
}
return true
}
for _, f := range j.Program.Files {
ast.Inspect(f, fn)
}
}
func (c *Checker) CheckUnsafePrintf(j *lint.Job) {
fn := func(node ast.Node) bool {
call, ok := node.(*ast.CallExpr)
if !ok {
return true
}
if !IsCallToAnyAST(j, call, "fmt.Printf", "fmt.Sprintf", "log.Printf") {
return true
}
if len(call.Args) != 1 {
return true
}
switch call.Args[0].(type) {
case *ast.CallExpr, *ast.Ident:
default:
return true
}
j.Errorf(call.Args[0], "printf-style function with dynamic first argument and no further arguments should use print-style function instead")
return true
}
for _, f := range j.Program.Files {
ast.Inspect(f, fn)
}
}
func (c *Checker) CheckEarlyDefer(j *lint.Job) {
fn := func(node ast.Node) bool {
block, ok := node.(*ast.BlockStmt)
if !ok {
return true
}
if len(block.List) < 2 {
return true
}
for i, stmt := range block.List {
if i == len(block.List)-1 {
break
}
assign, ok := stmt.(*ast.AssignStmt)
if !ok {
continue
}
if len(assign.Rhs) != 1 {
continue
}
if len(assign.Lhs) < 2 {
continue
}
if lhs, ok := assign.Lhs[len(assign.Lhs)-1].(*ast.Ident); ok && lhs.Name == "_" {
continue
}
call, ok := assign.Rhs[0].(*ast.CallExpr)
if !ok {
continue
}
sig, ok := TypeOf(j, call.Fun).(*types.Signature)
if !ok {
continue
}
if sig.Results().Len() < 2 {
continue
}
last := sig.Results().At(sig.Results().Len() - 1)
// FIXME(dh): check that it's error from universe, not
// another type of the same name
if last.Type().String() != "error" {
continue
}
lhs, ok := assign.Lhs[0].(*ast.Ident)
if !ok {
continue
}
def, ok := block.List[i+1].(*ast.DeferStmt)
if !ok {
continue
}
sel, ok := def.Call.Fun.(*ast.SelectorExpr)
if !ok {
continue
}
ident, ok := selectorX(sel).(*ast.Ident)
if !ok {
continue
}
if ident.Obj != lhs.Obj {
continue
}
if sel.Sel.Name != "Close" {
continue
}
j.Errorf(def, "should check returned error before deferring %s", Render(j, def.Call))
}
return true
}
for _, f := range j.Program.Files {
ast.Inspect(f, fn)
}
}
func selectorX(sel *ast.SelectorExpr) ast.Node {
switch x := sel.X.(type) {
case *ast.SelectorExpr:
return selectorX(x)
default:
return x
}
}
func (c *Checker) CheckEmptyCriticalSection(j *lint.Job) {
// Initially it might seem like this check would be easier to
// implement in SSA. After all, we're only checking for two
// consecutive method calls. In reality, however, there may be any
// number of other instructions between the lock and unlock, while
// still constituting an empty critical section. For example,
// given `m.x().Lock(); m.x().Unlock()`, there will be a call to
// x(). In the AST-based approach, this has a tiny potential for a
// false positive (the second call to x might be doing work that
// is protected by the mutex). In an SSA-based approach, however,
// it would miss a lot of real bugs.
mutexParams := func(s ast.Stmt) (x ast.Expr, funcName string, ok bool) {
expr, ok := s.(*ast.ExprStmt)
if !ok {
return nil, "", false
}
call, ok := expr.X.(*ast.CallExpr)
if !ok {
return nil, "", false
}
sel, ok := call.Fun.(*ast.SelectorExpr)
if !ok {
return nil, "", false
}
fn, ok := ObjectOf(j, sel.Sel).(*types.Func)
if !ok {
return nil, "", false
}
sig := fn.Type().(*types.Signature)
if sig.Params().Len() != 0 || sig.Results().Len() != 0 {
return nil, "", false
}
return sel.X, fn.Name(), true
}
fn := func(node ast.Node) bool {
block, ok := node.(*ast.BlockStmt)
if !ok {
return true
}
if len(block.List) < 2 {
return true
}
for i := range block.List[:len(block.List)-1] {
sel1, method1, ok1 := mutexParams(block.List[i])
sel2, method2, ok2 := mutexParams(block.List[i+1])
if !ok1 || !ok2 || Render(j, sel1) != Render(j, sel2) {
continue
}
if (method1 == "Lock" && method2 == "Unlock") ||
(method1 == "RLock" && method2 == "RUnlock") {
j.Errorf(block.List[i+1], "empty critical section")
}
}
return true
}
for _, f := range j.Program.Files {
ast.Inspect(f, fn)
}
}
// cgo produces code like fn(&*_Cvar_kSomeCallbacks) which we don't
// want to flag.
var cgoIdent = regexp.MustCompile(`^_C(func|var)_.+$`)
func (c *Checker) CheckIneffectiveCopy(j *lint.Job) {
fn := func(node ast.Node) bool {
if unary, ok := node.(*ast.UnaryExpr); ok {
if star, ok := unary.X.(*ast.StarExpr); ok && unary.Op == token.AND {
ident, ok := star.X.(*ast.Ident)
if !ok || !cgoIdent.MatchString(ident.Name) {
j.Errorf(unary, "&*x will be simplified to x. It will not copy x.")
}
}
}
if star, ok := node.(*ast.StarExpr); ok {
if unary, ok := star.X.(*ast.UnaryExpr); ok && unary.Op == token.AND {
j.Errorf(star, "*&x will be simplified to x. It will not copy x.")
}
}
return true
}
for _, f := range j.Program.Files {
ast.Inspect(f, fn)
}
}
func (c *Checker) CheckDiffSizeComparison(j *lint.Job) {
for _, ssafn := range j.Program.InitialFunctions {
for _, b := range ssafn.Blocks {
for _, ins := range b.Instrs {
binop, ok := ins.(*ssa.BinOp)
if !ok {
continue
}
if binop.Op != token.EQL && binop.Op != token.NEQ {
continue
}
_, ok1 := binop.X.(*ssa.Slice)
_, ok2 := binop.Y.(*ssa.Slice)
if !ok1 && !ok2 {
continue
}
r := c.funcDescs.Get(ssafn).Ranges
r1, ok1 := r.Get(binop.X).(vrp.StringInterval)
r2, ok2 := r.Get(binop.Y).(vrp.StringInterval)
if !ok1 || !ok2 {
continue
}
if r1.Length.Intersection(r2.Length).Empty() {
j.Errorf(binop, "comparing strings of different sizes for equality will always return false")
}
}
}
}
}
func (c *Checker) CheckCanonicalHeaderKey(j *lint.Job) {
fn := func(node ast.Node) bool {
assign, ok := node.(*ast.AssignStmt)
if ok {
// TODO(dh): This risks missing some Header reads, for
// example in `h1["foo"] = h2["foo"]` these edge
// cases are probably rare enough to ignore for now.
for _, expr := range assign.Lhs {
op, ok := expr.(*ast.IndexExpr)
if !ok {
continue
}
if hasType(j, op.X, "net/http.Header") {
return false
}
}
return true
}
op, ok := node.(*ast.IndexExpr)
if !ok {
return true
}
if !hasType(j, op.X, "net/http.Header") {
return true
}
s, ok := ExprToString(j, op.Index)
if !ok {
return true
}
if s == http.CanonicalHeaderKey(s) {
return true
}
j.Errorf(op, "keys in http.Header are canonicalized, %q is not canonical; fix the constant or use http.CanonicalHeaderKey", s)
return true
}
for _, f := range j.Program.Files {
ast.Inspect(f, fn)
}
}
func (c *Checker) CheckBenchmarkN(j *lint.Job) {
fn := func(node ast.Node) bool {
assign, ok := node.(*ast.AssignStmt)
if !ok {
return true
}
if len(assign.Lhs) != 1 || len(assign.Rhs) != 1 {
return true
}
sel, ok := assign.Lhs[0].(*ast.SelectorExpr)
if !ok {
return true
}
if sel.Sel.Name != "N" {
return true
}
if !hasType(j, sel.X, "*testing.B") {
return true
}
j.Errorf(assign, "should not assign to %s", Render(j, sel))
return true
}
for _, f := range j.Program.Files {
ast.Inspect(f, fn)
}
}
func (c *Checker) CheckUnreadVariableValues(j *lint.Job) {
for _, ssafn := range j.Program.InitialFunctions {
if IsExample(ssafn) {
continue
}
node := ssafn.Syntax()
if node == nil {
continue
}
ast.Inspect(node, func(node ast.Node) bool {
assign, ok := node.(*ast.AssignStmt)
if !ok {
return true
}
if len(assign.Lhs) > 1 && len(assign.Rhs) == 1 {
// Either a function call with multiple return values,
// or a comma-ok assignment
val, _ := ssafn.ValueForExpr(assign.Rhs[0])
if val == nil {
return true
}
refs := val.Referrers()
if refs == nil {
return true
}
for _, ref := range *refs {
ex, ok := ref.(*ssa.Extract)
if !ok {
continue
}
exrefs := ex.Referrers()
if exrefs == nil {
continue
}
if len(FilterDebug(*exrefs)) == 0 {
lhs := assign.Lhs[ex.Index]
if ident, ok := lhs.(*ast.Ident); !ok || ok && ident.Name == "_" {
continue
}
j.Errorf(lhs, "this value of %s is never used", lhs)
}
}
return true
}
for i, lhs := range assign.Lhs {
rhs := assign.Rhs[i]
if ident, ok := lhs.(*ast.Ident); !ok || ok && ident.Name == "_" {
continue
}
val, _ := ssafn.ValueForExpr(rhs)
if val == nil {
continue
}
refs := val.Referrers()
if refs == nil {
// TODO investigate why refs can be nil
return true
}
if len(FilterDebug(*refs)) == 0 {
j.Errorf(lhs, "this value of %s is never used", lhs)
}
}
return true
})
}
}
func (c *Checker) CheckPredeterminedBooleanExprs(j *lint.Job) {
for _, ssafn := range j.Program.InitialFunctions {
for _, block := range ssafn.Blocks {
for _, ins := range block.Instrs {
ssabinop, ok := ins.(*ssa.BinOp)
if !ok {
continue
}
switch ssabinop.Op {
case token.GTR, token.LSS, token.EQL, token.NEQ, token.LEQ, token.GEQ:
default:
continue
}
xs, ok1 := consts(ssabinop.X, nil, nil)
ys, ok2 := consts(ssabinop.Y, nil, nil)
if !ok1 || !ok2 || len(xs) == 0 || len(ys) == 0 {
continue
}
trues := 0
for _, x := range xs {
for _, y := range ys {
if x.Value == nil {
if y.Value == nil {
trues++
}
continue
}
if constant.Compare(x.Value, ssabinop.Op, y.Value) {
trues++
}
}
}
b := trues != 0
if trues == 0 || trues == len(xs)*len(ys) {
j.Errorf(ssabinop, "binary expression is always %t for all possible values (%s %s %s)",
b, xs, ssabinop.Op, ys)
}
}
}
}
}
func (c *Checker) CheckNilMaps(j *lint.Job) {
for _, ssafn := range j.Program.InitialFunctions {
for _, block := range ssafn.Blocks {
for _, ins := range block.Instrs {
mu, ok := ins.(*ssa.MapUpdate)
if !ok {
continue
}
c, ok := mu.Map.(*ssa.Const)
if !ok {
continue
}
if c.Value != nil {
continue
}
j.Errorf(mu, "assignment to nil map")
}
}
}
}
func (c *Checker) CheckUnsignedComparison(j *lint.Job) {
fn := func(node ast.Node) bool {
expr, ok := node.(*ast.BinaryExpr)
if !ok {
return true
}
tx := TypeOf(j, expr.X)
basic, ok := tx.Underlying().(*types.Basic)
if !ok {
return true
}
if (basic.Info() & types.IsUnsigned) == 0 {
return true
}
lit, ok := expr.Y.(*ast.BasicLit)
if !ok || lit.Value != "0" {
return true
}
switch expr.Op {
case token.GEQ:
j.Errorf(expr, "unsigned values are always >= 0")
case token.LSS:
j.Errorf(expr, "unsigned values are never < 0")
}
return true
}
for _, f := range j.Program.Files {
ast.Inspect(f, fn)
}
}
func consts(val ssa.Value, out []*ssa.Const, visitedPhis map[string]bool) ([]*ssa.Const, bool) {
if visitedPhis == nil {
visitedPhis = map[string]bool{}
}
var ok bool
switch val := val.(type) {
case *ssa.Phi:
if visitedPhis[val.Name()] {
break
}
visitedPhis[val.Name()] = true
vals := val.Operands(nil)
for _, phival := range vals {
out, ok = consts(*phival, out, visitedPhis)
if !ok {
return nil, false
}
}
case *ssa.Const:
out = append(out, val)
case *ssa.Convert:
out, ok = consts(val.X, out, visitedPhis)
if !ok {
return nil, false
}
default:
return nil, false
}
if len(out) < 2 {
return out, true
}
uniq := []*ssa.Const{out[0]}
for _, val := range out[1:] {
if val.Value == uniq[len(uniq)-1].Value {
continue
}
uniq = append(uniq, val)
}
return uniq, true
}
func (c *Checker) CheckLoopCondition(j *lint.Job) {
for _, ssafn := range j.Program.InitialFunctions {
fn := func(node ast.Node) bool {
loop, ok := node.(*ast.ForStmt)
if !ok {
return true
}
if loop.Init == nil || loop.Cond == nil || loop.Post == nil {
return true
}
init, ok := loop.Init.(*ast.AssignStmt)
if !ok || len(init.Lhs) != 1 || len(init.Rhs) != 1 {
return true
}
cond, ok := loop.Cond.(*ast.BinaryExpr)
if !ok {
return true
}
x, ok := cond.X.(*ast.Ident)
if !ok {
return true
}
lhs, ok := init.Lhs[0].(*ast.Ident)
if !ok {
return true
}
if x.Obj != lhs.Obj {
return true
}
if _, ok := loop.Post.(*ast.IncDecStmt); !ok {
return true
}
v, isAddr := ssafn.ValueForExpr(cond.X)
if v == nil || isAddr {
return true
}
switch v := v.(type) {
case *ssa.Phi:
ops := v.Operands(nil)
if len(ops) != 2 {
return true
}
_, ok := (*ops[0]).(*ssa.Const)
if !ok {
return true
}
sigma, ok := (*ops[1]).(*ssa.Sigma)
if !ok {
return true
}
if sigma.X != v {
return true
}
case *ssa.UnOp:
return true
}
j.Errorf(cond, "variable in loop condition never changes")
return true
}
Inspect(ssafn.Syntax(), fn)
}
}
func (c *Checker) CheckArgOverwritten(j *lint.Job) {
for _, ssafn := range j.Program.InitialFunctions {
fn := func(node ast.Node) bool {
var typ *ast.FuncType
var body *ast.BlockStmt
switch fn := node.(type) {
case *ast.FuncDecl:
typ = fn.Type
body = fn.Body
case *ast.FuncLit:
typ = fn.Type
body = fn.Body
}
if body == nil {
return true
}
if len(typ.Params.List) == 0 {
return true
}
for _, field := range typ.Params.List {
for _, arg := range field.Names {
obj := ObjectOf(j, arg)
var ssaobj *ssa.Parameter
for _, param := range ssafn.Params {
if param.Object() == obj {
ssaobj = param
break
}
}
if ssaobj == nil {
continue
}
refs := ssaobj.Referrers()
if refs == nil {
continue
}
if len(FilterDebug(*refs)) != 0 {
continue
}
assigned := false
ast.Inspect(body, func(node ast.Node) bool {
assign, ok := node.(*ast.AssignStmt)
if !ok {
return true
}
for _, lhs := range assign.Lhs {
ident, ok := lhs.(*ast.Ident)
if !ok {
continue
}
if ObjectOf(j, ident) == obj {
assigned = true
return false
}
}
return true
})
if assigned {
j.Errorf(arg, "argument %s is overwritten before first use", arg)
}
}
}
return true
}
Inspect(ssafn.Syntax(), fn)
}
}
func (c *Checker) CheckIneffectiveLoop(j *lint.Job) {
// This check detects some, but not all unconditional loop exits.
// We give up in the following cases:
//
// - a goto anywhere in the loop. The goto might skip over our
// return, and we don't check that it doesn't.
//
// - any nested, unlabelled continue, even if it is in another
// loop or closure.
fn := func(node ast.Node) bool {
var body *ast.BlockStmt
switch fn := node.(type) {
case *ast.FuncDecl:
body = fn.Body
case *ast.FuncLit:
body = fn.Body
default:
return true
}
if body == nil {
return true
}
labels := map[*ast.Object]ast.Stmt{}
ast.Inspect(body, func(node ast.Node) bool {
label, ok := node.(*ast.LabeledStmt)
if !ok {
return true
}
labels[label.Label.Obj] = label.Stmt
return true
})
ast.Inspect(body, func(node ast.Node) bool {
var loop ast.Node
var body *ast.BlockStmt
switch node := node.(type) {
case *ast.ForStmt:
body = node.Body
loop = node
case *ast.RangeStmt:
typ := TypeOf(j, node.X)
if _, ok := typ.Underlying().(*types.Map); ok {
// looping once over a map is a valid pattern for
// getting an arbitrary element.
return true
}
body = node.Body
loop = node
default:
return true
}
if len(body.List) < 2 {
// avoid flagging the somewhat common pattern of using
// a range loop to get the first element in a slice,
// or the first rune in a string.
return true
}
var unconditionalExit ast.Node
hasBranching := false
for _, stmt := range body.List {
switch stmt := stmt.(type) {
case *ast.BranchStmt:
switch stmt.Tok {
case token.BREAK:
if stmt.Label == nil || labels[stmt.Label.Obj] == loop {
unconditionalExit = stmt
}
case token.CONTINUE:
if stmt.Label == nil || labels[stmt.Label.Obj] == loop {
unconditionalExit = nil
return false
}
}
case *ast.ReturnStmt:
unconditionalExit = stmt
case *ast.IfStmt, *ast.ForStmt, *ast.RangeStmt, *ast.SwitchStmt, *ast.SelectStmt:
hasBranching = true
}
}
if unconditionalExit == nil || !hasBranching {
return false
}
ast.Inspect(body, func(node ast.Node) bool {
if branch, ok := node.(*ast.BranchStmt); ok {
switch branch.Tok {
case token.GOTO:
unconditionalExit = nil
return false
case token.CONTINUE:
if branch.Label != nil && labels[branch.Label.Obj] != loop {
return true
}
unconditionalExit = nil
return false
}
}
return true
})
if unconditionalExit != nil {
j.Errorf(unconditionalExit, "the surrounding loop is unconditionally terminated")
}
return true
})
return true
}
for _, f := range j.Program.Files {
ast.Inspect(f, fn)
}
}
func (c *Checker) CheckNilContext(j *lint.Job) {
fn := func(node ast.Node) bool {
call, ok := node.(*ast.CallExpr)
if !ok {
return true
}
if len(call.Args) == 0 {
return true
}
if typ, ok := TypeOf(j, call.Args[0]).(*types.Basic); !ok || typ.Kind() != types.UntypedNil {
return true
}
sig, ok := TypeOf(j, call.Fun).(*types.Signature)
if !ok {
return true
}
if sig.Params().Len() == 0 {
return true
}
if !IsType(sig.Params().At(0).Type(), "context.Context") {
return true
}
j.Errorf(call.Args[0],
"do not pass a nil Context, even if a function permits it; pass context.TODO if you are unsure about which Context to use")
return true
}
for _, f := range j.Program.Files {
ast.Inspect(f, fn)
}
}
func (c *Checker) CheckSeeker(j *lint.Job) {
fn := func(node ast.Node) bool {
call, ok := node.(*ast.CallExpr)
if !ok {
return true
}
sel, ok := call.Fun.(*ast.SelectorExpr)
if !ok {
return true
}
if sel.Sel.Name != "Seek" {
return true
}
if len(call.Args) != 2 {
return true
}
arg0, ok := call.Args[0].(*ast.SelectorExpr)
if !ok {
return true
}
switch arg0.Sel.Name {
case "SeekStart", "SeekCurrent", "SeekEnd":
default:
return true
}
pkg, ok := arg0.X.(*ast.Ident)
if !ok {
return true
}
if pkg.Name != "io" {
return true
}
j.Errorf(call, "the first argument of io.Seeker is the offset, but an io.Seek* constant is being used instead")
return true
}
for _, f := range j.Program.Files {
ast.Inspect(f, fn)
}
}
func (c *Checker) CheckIneffectiveAppend(j *lint.Job) {
isAppend := func(ins ssa.Value) bool {
call, ok := ins.(*ssa.Call)
if !ok {
return false
}
if call.Call.IsInvoke() {
return false
}
if builtin, ok := call.Call.Value.(*ssa.Builtin); !ok || builtin.Name() != "append" {
return false
}
return true
}
for _, ssafn := range j.Program.InitialFunctions {
for _, block := range ssafn.Blocks {
for _, ins := range block.Instrs {
val, ok := ins.(ssa.Value)
if !ok || !isAppend(val) {
continue
}
isUsed := false
visited := map[ssa.Instruction]bool{}
var walkRefs func(refs []ssa.Instruction)
walkRefs = func(refs []ssa.Instruction) {
loop:
for _, ref := range refs {
if visited[ref] {
continue
}
visited[ref] = true
if _, ok := ref.(*ssa.DebugRef); ok {
continue
}
switch ref := ref.(type) {
case *ssa.Phi:
walkRefs(*ref.Referrers())
case *ssa.Sigma:
walkRefs(*ref.Referrers())
case ssa.Value:
if !isAppend(ref) {
isUsed = true
} else {
walkRefs(*ref.Referrers())
}
case ssa.Instruction:
isUsed = true
break loop
}
}
}
refs := val.Referrers()
if refs == nil {
continue
}
walkRefs(*refs)
if !isUsed {
j.Errorf(ins, "this result of append is never used, except maybe in other appends")
}
}
}
}
}
func (c *Checker) CheckConcurrentTesting(j *lint.Job) {
for _, ssafn := range j.Program.InitialFunctions {
for _, block := range ssafn.Blocks {
for _, ins := range block.Instrs {
gostmt, ok := ins.(*ssa.Go)
if !ok {
continue
}
var fn *ssa.Function
switch val := gostmt.Call.Value.(type) {
case *ssa.Function:
fn = val
case *ssa.MakeClosure:
fn = val.Fn.(*ssa.Function)
default:
continue
}
if fn.Blocks == nil {
continue
}
for _, block := range fn.Blocks {
for _, ins := range block.Instrs {
call, ok := ins.(*ssa.Call)
if !ok {
continue
}
if call.Call.IsInvoke() {
continue
}
callee := call.Call.StaticCallee()
if callee == nil {
continue
}
recv := callee.Signature.Recv()
if recv == nil {
continue
}
if !IsType(recv.Type(), "*testing.common") {
continue
}
fn, ok := call.Call.StaticCallee().Object().(*types.Func)
if !ok {
continue
}
name := fn.Name()
switch name {
case "FailNow", "Fatal", "Fatalf", "SkipNow", "Skip", "Skipf":
default:
continue
}
j.Errorf(gostmt, "the goroutine calls T.%s, which must be called in the same goroutine as the test", name)
}
}
}
}
}
}
func (c *Checker) CheckCyclicFinalizer(j *lint.Job) {
for _, ssafn := range j.Program.InitialFunctions {
node := c.funcDescs.CallGraph.CreateNode(ssafn)
for _, edge := range node.Out {
if edge.Callee.Func.RelString(nil) != "runtime.SetFinalizer" {
continue
}
arg0 := edge.Site.Common().Args[0]
if iface, ok := arg0.(*ssa.MakeInterface); ok {
arg0 = iface.X
}
unop, ok := arg0.(*ssa.UnOp)
if !ok {
continue
}
v, ok := unop.X.(*ssa.Alloc)
if !ok {
continue
}
arg1 := edge.Site.Common().Args[1]
if iface, ok := arg1.(*ssa.MakeInterface); ok {
arg1 = iface.X
}
mc, ok := arg1.(*ssa.MakeClosure)
if !ok {
continue
}
for _, b := range mc.Bindings {
if b == v {
pos := j.Program.DisplayPosition(mc.Fn.Pos())
j.Errorf(edge.Site, "the finalizer closes over the object, preventing the finalizer from ever running (at %s)", pos)
}
}
}
}
}
func (c *Checker) CheckSliceOutOfBounds(j *lint.Job) {
for _, ssafn := range j.Program.InitialFunctions {
for _, block := range ssafn.Blocks {
for _, ins := range block.Instrs {
ia, ok := ins.(*ssa.IndexAddr)
if !ok {
continue
}
if _, ok := ia.X.Type().Underlying().(*types.Slice); !ok {
continue
}
sr, ok1 := c.funcDescs.Get(ssafn).Ranges[ia.X].(vrp.SliceInterval)
idxr, ok2 := c.funcDescs.Get(ssafn).Ranges[ia.Index].(vrp.IntInterval)
if !ok1 || !ok2 || !sr.IsKnown() || !idxr.IsKnown() || sr.Length.Empty() || idxr.Empty() {
continue
}
if idxr.Lower.Cmp(sr.Length.Upper) >= 0 {
j.Errorf(ia, "index out of bounds")
}
}
}
}
}
func (c *Checker) CheckDeferLock(j *lint.Job) {
for _, ssafn := range j.Program.InitialFunctions {
for _, block := range ssafn.Blocks {
instrs := FilterDebug(block.Instrs)
if len(instrs) < 2 {
continue
}
for i, ins := range instrs[:len(instrs)-1] {
call, ok := ins.(*ssa.Call)
if !ok {
continue
}
if !IsCallTo(call.Common(), "(*sync.Mutex).Lock") && !IsCallTo(call.Common(), "(*sync.RWMutex).RLock") {
continue
}
nins, ok := instrs[i+1].(*ssa.Defer)
if !ok {
continue
}
if !IsCallTo(&nins.Call, "(*sync.Mutex).Lock") && !IsCallTo(&nins.Call, "(*sync.RWMutex).RLock") {
continue
}
if call.Common().Args[0] != nins.Call.Args[0] {
continue
}
name := shortCallName(call.Common())
alt := ""
switch name {
case "Lock":
alt = "Unlock"
case "RLock":
alt = "RUnlock"
}
j.Errorf(nins, "deferring %s right after having locked already; did you mean to defer %s?", name, alt)
}
}
}
}
func (c *Checker) CheckNaNComparison(j *lint.Job) {
isNaN := func(v ssa.Value) bool {
call, ok := v.(*ssa.Call)
if !ok {
return false
}
return IsCallTo(call.Common(), "math.NaN")
}
for _, ssafn := range j.Program.InitialFunctions {
for _, block := range ssafn.Blocks {
for _, ins := range block.Instrs {
ins, ok := ins.(*ssa.BinOp)
if !ok {
continue
}
if isNaN(ins.X) || isNaN(ins.Y) {
j.Errorf(ins, "no value is equal to NaN, not even NaN itself")
}
}
}
}
}
func (c *Checker) CheckInfiniteRecursion(j *lint.Job) {
for _, ssafn := range j.Program.InitialFunctions {
node := c.funcDescs.CallGraph.CreateNode(ssafn)
for _, edge := range node.Out {
if edge.Callee != node {
continue
}
if _, ok := edge.Site.(*ssa.Go); ok {
// Recursively spawning goroutines doesn't consume
// stack space infinitely, so don't flag it.
continue
}
block := edge.Site.Block()
canReturn := false
for _, b := range ssafn.Blocks {
if block.Dominates(b) {
continue
}
if len(b.Instrs) == 0 {
continue
}
if _, ok := b.Instrs[len(b.Instrs)-1].(*ssa.Return); ok {
canReturn = true
break
}
}
if canReturn {
continue
}
j.Errorf(edge.Site, "infinite recursive call")
}
}
}
func objectName(obj types.Object) string {
if obj == nil {
return "<nil>"
}
var name string
if obj.Pkg() != nil && obj.Pkg().Scope().Lookup(obj.Name()) == obj {
var s string
s = obj.Pkg().Path()
if s != "" {
name += s + "."
}
}
name += obj.Name()
return name
}
func isName(j *lint.Job, expr ast.Expr, name string) bool {
var obj types.Object
switch expr := expr.(type) {
case *ast.Ident:
obj = ObjectOf(j, expr)
case *ast.SelectorExpr:
obj = ObjectOf(j, expr.Sel)
}
return objectName(obj) == name
}
func (c *Checker) CheckLeakyTimeTick(j *lint.Job) {
for _, ssafn := range j.Program.InitialFunctions {
if IsInMain(j, ssafn) || IsInTest(j, ssafn) {
continue
}
for _, block := range ssafn.Blocks {
for _, ins := range block.Instrs {
call, ok := ins.(*ssa.Call)
if !ok || !IsCallTo(call.Common(), "time.Tick") {
continue
}
if c.funcDescs.Get(call.Parent()).Infinite {
continue
}
j.Errorf(call, "using time.Tick leaks the underlying ticker, consider using it only in endless functions, tests and the main package, and use time.NewTicker here")
}
}
}
}
func (c *Checker) CheckDoubleNegation(j *lint.Job) {
fn := func(node ast.Node) bool {
unary1, ok := node.(*ast.UnaryExpr)
if !ok {
return true
}
unary2, ok := unary1.X.(*ast.UnaryExpr)
if !ok {
return true
}
if unary1.Op != token.NOT || unary2.Op != token.NOT {
return true
}
j.Errorf(unary1, "negating a boolean twice has no effect; is this a typo?")
return true
}
for _, f := range j.Program.Files {
ast.Inspect(f, fn)
}
}
func hasSideEffects(node ast.Node) bool {
dynamic := false
ast.Inspect(node, func(node ast.Node) bool {
switch node := node.(type) {
case *ast.CallExpr:
dynamic = true
return false
case *ast.UnaryExpr:
if node.Op == token.ARROW {
dynamic = true
return false
}
}
return true
})
return dynamic
}
func (c *Checker) CheckRepeatedIfElse(j *lint.Job) {
seen := map[ast.Node]bool{}
var collectConds func(ifstmt *ast.IfStmt, inits []ast.Stmt, conds []ast.Expr) ([]ast.Stmt, []ast.Expr)
collectConds = func(ifstmt *ast.IfStmt, inits []ast.Stmt, conds []ast.Expr) ([]ast.Stmt, []ast.Expr) {
seen[ifstmt] = true
if ifstmt.Init != nil {
inits = append(inits, ifstmt.Init)
}
conds = append(conds, ifstmt.Cond)
if elsestmt, ok := ifstmt.Else.(*ast.IfStmt); ok {
return collectConds(elsestmt, inits, conds)
}
return inits, conds
}
fn := func(node ast.Node) bool {
ifstmt, ok := node.(*ast.IfStmt)
if !ok {
return true
}
if seen[ifstmt] {
return true
}
inits, conds := collectConds(ifstmt, nil, nil)
if len(inits) > 0 {
return true
}
for _, cond := range conds {
if hasSideEffects(cond) {
return true
}
}
counts := map[string]int{}
for _, cond := range conds {
s := Render(j, cond)
counts[s]++
if counts[s] == 2 {
j.Errorf(cond, "this condition occurs multiple times in this if/else if chain")
}
}
return true
}
for _, f := range j.Program.Files {
ast.Inspect(f, fn)
}
}
func (c *Checker) CheckSillyBitwiseOps(j *lint.Job) {
for _, ssafn := range j.Program.InitialFunctions {
for _, block := range ssafn.Blocks {
for _, ins := range block.Instrs {
ins, ok := ins.(*ssa.BinOp)
if !ok {
continue
}
if c, ok := ins.Y.(*ssa.Const); !ok || c.Value == nil || c.Value.Kind() != constant.Int || c.Uint64() != 0 {
continue
}
switch ins.Op {
case token.AND, token.OR, token.XOR:
default:
// we do not flag shifts because too often, x<<0 is part
// of a pattern, x<<0, x<<8, x<<16, ...
continue
}
path, _ := astutil.PathEnclosingInterval(j.File(ins), ins.Pos(), ins.Pos())
if len(path) == 0 {
continue
}
if node, ok := path[0].(*ast.BinaryExpr); !ok || !IsZero(node.Y) {
continue
}
switch ins.Op {
case token.AND:
j.Errorf(ins, "x & 0 always equals 0")
case token.OR, token.XOR:
j.Errorf(ins, "x %s 0 always equals x", ins.Op)
}
}
}
}
}
func (c *Checker) CheckNonOctalFileMode(j *lint.Job) {
fn := func(node ast.Node) bool {
call, ok := node.(*ast.CallExpr)
if !ok {
return true
}
sig, ok := TypeOf(j, call.Fun).(*types.Signature)
if !ok {
return true
}
n := sig.Params().Len()
var args []int
for i := 0; i < n; i++ {
typ := sig.Params().At(i).Type()
if IsType(typ, "os.FileMode") {
args = append(args, i)
}
}
for _, i := range args {
lit, ok := call.Args[i].(*ast.BasicLit)
if !ok {
continue
}
if len(lit.Value) == 3 &&
lit.Value[0] != '0' &&
lit.Value[0] >= '0' && lit.Value[0] <= '7' &&
lit.Value[1] >= '0' && lit.Value[1] <= '7' &&
lit.Value[2] >= '0' && lit.Value[2] <= '7' {
v, err := strconv.ParseInt(lit.Value, 10, 64)
if err != nil {
continue
}
j.Errorf(call.Args[i], "file mode '%s' evaluates to %#o; did you mean '0%s'?", lit.Value, v, lit.Value)
}
}
return true
}
for _, f := range j.Program.Files {
ast.Inspect(f, fn)
}
}
func (c *Checker) CheckPureFunctions(j *lint.Job) {
fnLoop:
for _, ssafn := range j.Program.InitialFunctions {
if IsInTest(j, ssafn) {
params := ssafn.Signature.Params()
for i := 0; i < params.Len(); i++ {
param := params.At(i)
if IsType(param.Type(), "*testing.B") {
// Ignore discarded pure functions in code related
// to benchmarks. Instead of matching BenchmarkFoo
// functions, we match any function accepting a
// *testing.B. Benchmarks sometimes call generic
// functions for doing the actual work, and
// checking for the parameter is a lot easier and
// faster than analyzing call trees.
continue fnLoop
}
}
}
for _, b := range ssafn.Blocks {
for _, ins := range b.Instrs {
ins, ok := ins.(*ssa.Call)
if !ok {
continue
}
refs := ins.Referrers()
if refs == nil || len(FilterDebug(*refs)) > 0 {
continue
}
callee := ins.Common().StaticCallee()
if callee == nil {
continue
}
if c.funcDescs.Get(callee).Pure && !c.funcDescs.Get(callee).Stub {
j.Errorf(ins, "%s is a pure function but its return value is ignored", callee.Name())
continue
}
}
}
}
}
func (c *Checker) isDeprecated(j *lint.Job, ident *ast.Ident) (bool, string) {
obj := ObjectOf(j, ident)
if obj.Pkg() == nil {
return false, ""
}
alt := c.deprecatedObjs[obj]
return alt != "", alt
}
func (c *Checker) CheckDeprecated(j *lint.Job) {
// Selectors can appear outside of function literals, e.g. when
// declaring package level variables.
var ssafn *ssa.Function
stack := 0
fn := func(node ast.Node) bool {
if node == nil {
stack--
} else {
stack++
}
if stack == 1 {
ssafn = nil
}
if fn, ok := node.(*ast.FuncDecl); ok {
ssafn = j.Program.SSA.FuncValue(ObjectOf(j, fn.Name).(*types.Func))
}
sel, ok := node.(*ast.SelectorExpr)
if !ok {
return true
}
obj := ObjectOf(j, sel.Sel)
if obj.Pkg() == nil {
return true
}
nodePkg := j.NodePackage(node).Pkg
if nodePkg == obj.Pkg() || obj.Pkg().Path()+"_test" == nodePkg.Path() {
// Don't flag stuff in our own package
return true
}
if ok, alt := c.isDeprecated(j, sel.Sel); ok {
// Look for the first available alternative, not the first
// version something was deprecated in. If a function was
// deprecated in Go 1.6, an alternative has been available
// already in 1.0, and we're targeting 1.2, it still
// makes sense to use the alternative from 1.0, to be
// future-proof.
minVersion := deprecated.Stdlib[SelectorName(j, sel)].AlternativeAvailableSince
if !IsGoVersion(j, minVersion) {
return true
}
if ssafn != nil {
if _, ok := c.deprecatedObjs[ssafn.Object()]; ok {
// functions that are deprecated may use deprecated
// symbols
return true
}
}
j.Errorf(sel, "%s is deprecated: %s", Render(j, sel), alt)
return true
}
return true
}
for _, f := range j.Program.Files {
ast.Inspect(f, fn)
}
}
func (c *Checker) callChecker(rules map[string]CallCheck) func(j *lint.Job) {
return func(j *lint.Job) {
c.checkCalls(j, rules)
}
}
func (c *Checker) checkCalls(j *lint.Job, rules map[string]CallCheck) {
for _, ssafn := range j.Program.InitialFunctions {
node := c.funcDescs.CallGraph.CreateNode(ssafn)
for _, edge := range node.Out {
callee := edge.Callee.Func
obj, ok := callee.Object().(*types.Func)
if !ok {
continue
}
r, ok := rules[obj.FullName()]
if !ok {
continue
}
var args []*Argument
ssaargs := edge.Site.Common().Args
if callee.Signature.Recv() != nil {
ssaargs = ssaargs[1:]
}
for _, arg := range ssaargs {
if iarg, ok := arg.(*ssa.MakeInterface); ok {
arg = iarg.X
}
vr := c.funcDescs.Get(edge.Site.Parent()).Ranges[arg]
args = append(args, &Argument{Value: Value{arg, vr}})
}
call := &Call{
Job: j,
Instr: edge.Site,
Args: args,
Checker: c,
Parent: edge.Site.Parent(),
}
r(call)
for idx, arg := range call.Args {
_ = idx
for _, e := range arg.invalids {
// path, _ := astutil.PathEnclosingInterval(f.File, edge.Site.Pos(), edge.Site.Pos())
// if len(path) < 2 {
// continue
// }
// astcall, ok := path[0].(*ast.CallExpr)
// if !ok {
// continue
// }
// j.Errorf(astcall.Args[idx], "%s", e)
j.Errorf(edge.Site, "%s", e)
}
}
for _, e := range call.invalids {
j.Errorf(call.Instr.Common(), "%s", e)
}
}
}
}
func unwrapFunction(val ssa.Value) *ssa.Function {
switch val := val.(type) {
case *ssa.Function:
return val
case *ssa.MakeClosure:
return val.Fn.(*ssa.Function)
default:
return nil
}
}
func shortCallName(call *ssa.CallCommon) string {
if call.IsInvoke() {
return ""
}
switch v := call.Value.(type) {
case *ssa.Function:
fn, ok := v.Object().(*types.Func)
if !ok {
return ""
}
return fn.Name()
case *ssa.Builtin:
return v.Name()
}
return ""
}
func hasCallTo(block *ssa.BasicBlock, name string) bool {
for _, ins := range block.Instrs {
call, ok := ins.(*ssa.Call)
if !ok {
continue
}
if IsCallTo(call.Common(), name) {
return true
}
}
return false
}
func (c *Checker) CheckWriterBufferModified(j *lint.Job) {
// TODO(dh): this might be a good candidate for taint analysis.
// Taint the argument as MUST_NOT_MODIFY, then propagate that
// through functions like bytes.Split
for _, ssafn := range j.Program.InitialFunctions {
sig := ssafn.Signature
if ssafn.Name() != "Write" || sig.Recv() == nil || sig.Params().Len() != 1 || sig.Results().Len() != 2 {
continue
}
tArg, ok := sig.Params().At(0).Type().(*types.Slice)
if !ok {
continue
}
if basic, ok := tArg.Elem().(*types.Basic); !ok || basic.Kind() != types.Byte {
continue
}
if basic, ok := sig.Results().At(0).Type().(*types.Basic); !ok || basic.Kind() != types.Int {
continue
}
if named, ok := sig.Results().At(1).Type().(*types.Named); !ok || !IsType(named, "error") {
continue
}
for _, block := range ssafn.Blocks {
for _, ins := range block.Instrs {
switch ins := ins.(type) {
case *ssa.Store:
addr, ok := ins.Addr.(*ssa.IndexAddr)
if !ok {
continue
}
if addr.X != ssafn.Params[1] {
continue
}
j.Errorf(ins, "io.Writer.Write must not modify the provided buffer, not even temporarily")
case *ssa.Call:
if !IsCallTo(ins.Common(), "append") {
continue
}
if ins.Common().Args[0] != ssafn.Params[1] {
continue
}
j.Errorf(ins, "io.Writer.Write must not modify the provided buffer, not even temporarily")
}
}
}
}
}
func loopedRegexp(name string) CallCheck {
return func(call *Call) {
if len(extractConsts(call.Args[0].Value.Value)) == 0 {
return
}
if !call.Checker.isInLoop(call.Instr.Block()) {
return
}
call.Invalid(fmt.Sprintf("calling %s in a loop has poor performance, consider using regexp.Compile", name))
}
}
func (c *Checker) CheckEmptyBranch(j *lint.Job) {
for _, ssafn := range j.Program.InitialFunctions {
if ssafn.Syntax() == nil {
continue
}
if IsGenerated(j.File(ssafn.Syntax())) {
continue
}
if IsExample(ssafn) {
continue
}
fn := func(node ast.Node) bool {
ifstmt, ok := node.(*ast.IfStmt)
if !ok {
return true
}
if ifstmt.Else != nil {
b, ok := ifstmt.Else.(*ast.BlockStmt)
if !ok || len(b.List) != 0 {
return true
}
j.Errorf(ifstmt.Else, "empty branch")
}
if len(ifstmt.Body.List) != 0 {
return true
}
j.Errorf(ifstmt, "empty branch")
return true
}
Inspect(ssafn.Syntax(), fn)
}
}
func (c *Checker) CheckMapBytesKey(j *lint.Job) {
for _, fn := range j.Program.InitialFunctions {
for _, b := range fn.Blocks {
insLoop:
for _, ins := range b.Instrs {
// find []byte -> string conversions
conv, ok := ins.(*ssa.Convert)
if !ok || conv.Type() != types.Universe.Lookup("string").Type() {
continue
}
if s, ok := conv.X.Type().(*types.Slice); !ok || s.Elem() != types.Universe.Lookup("byte").Type() {
continue
}
refs := conv.Referrers()
// need at least two (DebugRef) references: the
// conversion and the *ast.Ident
if refs == nil || len(*refs) < 2 {
continue
}
ident := false
// skip first reference, that's the conversion itself
for _, ref := range (*refs)[1:] {
switch ref := ref.(type) {
case *ssa.DebugRef:
if _, ok := ref.Expr.(*ast.Ident); !ok {
// the string seems to be used somewhere
// unexpected; the default branch should
// catch this already, but be safe
continue insLoop
} else {
ident = true
}
case *ssa.Lookup:
default:
// the string is used somewhere else than a
// map lookup
continue insLoop
}
}
// the result of the conversion wasn't assigned to an
// identifier
if !ident {
continue
}
j.Errorf(conv, "m[string(key)] would be more efficient than k := string(key); m[k]")
}
}
}
}
func (c *Checker) CheckRangeStringRunes(j *lint.Job) {
sharedcheck.CheckRangeStringRunes(j)
}
func (c *Checker) CheckSelfAssignment(j *lint.Job) {
fn := func(node ast.Node) bool {
assign, ok := node.(*ast.AssignStmt)
if !ok {
return true
}
if assign.Tok != token.ASSIGN || len(assign.Lhs) != len(assign.Rhs) {
return true
}
for i, stmt := range assign.Lhs {
rlh := Render(j, stmt)
rrh := Render(j, assign.Rhs[i])
if rlh == rrh {
j.Errorf(assign, "self-assignment of %s to %s", rrh, rlh)
}
}
return true
}
for _, f := range c.filterGenerated(j.Program.Files) {
ast.Inspect(f, fn)
}
}
func buildTagsIdentical(s1, s2 []string) bool {
if len(s1) != len(s2) {
return false
}
s1s := make([]string, len(s1))
copy(s1s, s1)
sort.Strings(s1s)
s2s := make([]string, len(s2))
copy(s2s, s2)
sort.Strings(s2s)
for i, s := range s1s {
if s != s2s[i] {
return false
}
}
return true
}
func (c *Checker) CheckDuplicateBuildConstraints(job *lint.Job) {
for _, f := range c.filterGenerated(job.Program.Files) {
constraints := buildTags(f)
for i, constraint1 := range constraints {
for j, constraint2 := range constraints {
if i >= j {
continue
}
if buildTagsIdentical(constraint1, constraint2) {
job.Errorf(f, "identical build constraints %q and %q",
strings.Join(constraint1, " "),
strings.Join(constraint2, " "))
}
}
}
}
}
func (c *Checker) CheckSillyRegexp(j *lint.Job) {
// We could use the rule checking engine for this, but the
// arguments aren't really invalid.
for _, fn := range j.Program.InitialFunctions {
for _, b := range fn.Blocks {
for _, ins := range b.Instrs {
call, ok := ins.(*ssa.Call)
if !ok {
continue
}
switch CallName(call.Common()) {
case "regexp.MustCompile", "regexp.Compile", "regexp.Match", "regexp.MatchReader", "regexp.MatchString":
default:
continue
}
c, ok := call.Common().Args[0].(*ssa.Const)
if !ok {
continue
}
s := constant.StringVal(c.Value)
re, err := syntax.Parse(s, 0)
if err != nil {
continue
}
if re.Op != syntax.OpLiteral && re.Op != syntax.OpEmptyMatch {
continue
}
j.Errorf(call, "regular expression does not contain any meta characters")
}
}
}
}
func (c *Checker) CheckMissingEnumTypesInDeclaration(j *lint.Job) {
fn := func(node ast.Node) bool {
decl, ok := node.(*ast.GenDecl)
if !ok {
return true
}
if !decl.Lparen.IsValid() {
// not a parenthesised gendecl
//
// TODO(dh): do we need this check, considering we require
// decl.Specs to contain 2+ elements?
return true
}
if decl.Tok != token.CONST {
return true
}
if len(decl.Specs) < 2 {
return true
}
if decl.Specs[0].(*ast.ValueSpec).Type == nil {
// first constant doesn't have a type
return true
}
for i, spec := range decl.Specs {
spec := spec.(*ast.ValueSpec)
if len(spec.Names) != 1 || len(spec.Values) != 1 {
return true
}
switch v := spec.Values[0].(type) {
case *ast.BasicLit:
case *ast.UnaryExpr:
if _, ok := v.X.(*ast.BasicLit); !ok {
return true
}
default:
// if it's not a literal it might be typed, such as
// time.Microsecond = 1000 * Nanosecond
return true
}
if i == 0 {
continue
}
if spec.Type != nil {
return true
}
}
j.Errorf(decl, "only the first constant has an explicit type")
return true
}
for _, f := range j.Program.Files {
ast.Inspect(f, fn)
}
}