vikunja-api/vendor/honnef.co/go/tools/ir/ssa.go
2020-05-29 22:15:21 +02:00

1856 lines
58 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ir
// This package defines a high-level intermediate representation for
// Go programs using static single-information (SSI) form.
import (
"fmt"
"go/ast"
"go/constant"
"go/token"
"go/types"
"sync"
"golang.org/x/tools/go/types/typeutil"
)
type ID int
// A Program is a partial or complete Go program converted to IR form.
type Program struct {
Fset *token.FileSet // position information for the files of this Program
PrintFunc string // create ir.html for function specified in PrintFunc
imported map[string]*Package // all importable Packages, keyed by import path
packages map[*types.Package]*Package // all loaded Packages, keyed by object
mode BuilderMode // set of mode bits for IR construction
MethodSets typeutil.MethodSetCache // cache of type-checker's method-sets
methodsMu sync.Mutex // guards the following maps:
methodSets typeutil.Map // maps type to its concrete methodSet
runtimeTypes typeutil.Map // types for which rtypes are needed
canon typeutil.Map // type canonicalization map
bounds map[*types.Func]*Function // bounds for curried x.Method closures
thunks map[selectionKey]*Function // thunks for T.Method expressions
}
// A Package is a single analyzed Go package containing Members for
// all package-level functions, variables, constants and types it
// declares. These may be accessed directly via Members, or via the
// type-specific accessor methods Func, Type, Var and Const.
//
// Members also contains entries for "init" (the synthetic package
// initializer) and "init#%d", the nth declared init function,
// and unspecified other things too.
//
type Package struct {
Prog *Program // the owning program
Pkg *types.Package // the corresponding go/types.Package
Members map[string]Member // all package members keyed by name (incl. init and init#%d)
Functions []*Function // all functions, excluding anonymous ones
values map[types.Object]Value // package members (incl. types and methods), keyed by object
init *Function // Func("init"); the package's init function
debug bool // include full debug info in this package
printFunc string // which function to print in HTML form
// The following fields are set transiently, then cleared
// after building.
buildOnce sync.Once // ensures package building occurs once
ninit int32 // number of init functions
info *types.Info // package type information
files []*ast.File // package ASTs
}
// A Member is a member of a Go package, implemented by *NamedConst,
// *Global, *Function, or *Type; they are created by package-level
// const, var, func and type declarations respectively.
//
type Member interface {
Name() string // declared name of the package member
String() string // package-qualified name of the package member
RelString(*types.Package) string // like String, but relative refs are unqualified
Object() types.Object // typechecker's object for this member, if any
Type() types.Type // type of the package member
Token() token.Token // token.{VAR,FUNC,CONST,TYPE}
Package() *Package // the containing package
}
// A Type is a Member of a Package representing a package-level named type.
type Type struct {
object *types.TypeName
pkg *Package
}
// A NamedConst is a Member of a Package representing a package-level
// named constant.
//
// Pos() returns the position of the declaring ast.ValueSpec.Names[*]
// identifier.
//
// NB: a NamedConst is not a Value; it contains a constant Value, which
// it augments with the name and position of its 'const' declaration.
//
type NamedConst struct {
object *types.Const
Value *Const
pkg *Package
}
// A Value is an IR value that can be referenced by an instruction.
type Value interface {
setID(ID)
// Name returns the name of this value, and determines how
// this Value appears when used as an operand of an
// Instruction.
//
// This is the same as the source name for Parameters,
// Builtins, Functions, FreeVars, Globals.
// For constants, it is a representation of the constant's value
// and type. For all other Values this is the name of the
// virtual register defined by the instruction.
//
// The name of an IR Value is not semantically significant,
// and may not even be unique within a function.
Name() string
// ID returns the ID of this value. IDs are unique within a single
// function and are densely numbered, but may contain gaps.
// Values and other Instructions share the same ID space.
// Globally, values are identified by their addresses. However,
// IDs exist to facilitate efficient storage of mappings between
// values and data when analysing functions.
//
// NB: IDs are allocated late in the IR construction process and
// are not available to early stages of said process.
ID() ID
// If this value is an Instruction, String returns its
// disassembled form; otherwise it returns unspecified
// human-readable information about the Value, such as its
// kind, name and type.
String() string
// Type returns the type of this value. Many instructions
// (e.g. IndexAddr) change their behaviour depending on the
// types of their operands.
Type() types.Type
// Parent returns the function to which this Value belongs.
// It returns nil for named Functions, Builtin and Global.
Parent() *Function
// Referrers returns the list of instructions that have this
// value as one of their operands; it may contain duplicates
// if an instruction has a repeated operand.
//
// Referrers actually returns a pointer through which the
// caller may perform mutations to the object's state.
//
// Referrers is currently only defined if Parent()!=nil,
// i.e. for the function-local values FreeVar, Parameter,
// Functions (iff anonymous) and all value-defining instructions.
// It returns nil for named Functions, Builtin and Global.
//
// Instruction.Operands contains the inverse of this relation.
Referrers() *[]Instruction
Operands(rands []*Value) []*Value // nil for non-Instructions
// Source returns the AST node responsible for creating this
// value. A single AST node may be responsible for more than one
// value, and not all values have an associated AST node.
//
// Do not use this method to find a Value given an ast.Expr; use
// ValueForExpr instead.
Source() ast.Node
// Pos returns Source().Pos() if Source is not nil, else it
// returns token.NoPos.
Pos() token.Pos
}
// An Instruction is an IR instruction that computes a new Value or
// has some effect.
//
// An Instruction that defines a value (e.g. BinOp) also implements
// the Value interface; an Instruction that only has an effect (e.g. Store)
// does not.
//
type Instruction interface {
setSource(ast.Node)
setID(ID)
// String returns the disassembled form of this value.
//
// Examples of Instructions that are Values:
// "BinOp <int> {+} t1 t2" (BinOp)
// "Call <int> len t1" (Call)
// Note that the name of the Value is not printed.
//
// Examples of Instructions that are not Values:
// "Return t1" (Return)
// "Store {int} t2 t1" (Store)
//
// (The separation of Value.Name() from Value.String() is useful
// for some analyses which distinguish the operation from the
// value it defines, e.g., 'y = local int' is both an allocation
// of memory 'local int' and a definition of a pointer y.)
String() string
// ID returns the ID of this instruction. IDs are unique within a single
// function and are densely numbered, but may contain gaps.
// Globally, instructions are identified by their addresses. However,
// IDs exist to facilitate efficient storage of mappings between
// instructions and data when analysing functions.
//
// NB: IDs are allocated late in the IR construction process and
// are not available to early stages of said process.
ID() ID
// Parent returns the function to which this instruction
// belongs.
Parent() *Function
// Block returns the basic block to which this instruction
// belongs.
Block() *BasicBlock
// setBlock sets the basic block to which this instruction belongs.
setBlock(*BasicBlock)
// Operands returns the operands of this instruction: the
// set of Values it references.
//
// Specifically, it appends their addresses to rands, a
// user-provided slice, and returns the resulting slice,
// permitting avoidance of memory allocation.
//
// The operands are appended in undefined order, but the order
// is consistent for a given Instruction; the addresses are
// always non-nil but may point to a nil Value. Clients may
// store through the pointers, e.g. to effect a value
// renaming.
//
// Value.Referrers is a subset of the inverse of this
// relation. (Referrers are not tracked for all types of
// Values.)
Operands(rands []*Value) []*Value
Referrers() *[]Instruction // nil for non-Values
// Source returns the AST node responsible for creating this
// instruction. A single AST node may be responsible for more than
// one instruction, and not all instructions have an associated
// AST node.
Source() ast.Node
// Pos returns Source().Pos() if Source is not nil, else it
// returns token.NoPos.
Pos() token.Pos
}
// A Node is a node in the IR value graph. Every concrete type that
// implements Node is also either a Value, an Instruction, or both.
//
// Node contains the methods common to Value and Instruction, plus the
// Operands and Referrers methods generalized to return nil for
// non-Instructions and non-Values, respectively.
//
// Node is provided to simplify IR graph algorithms. Clients should
// use the more specific and informative Value or Instruction
// interfaces where appropriate.
//
type Node interface {
setID(ID)
// Common methods:
ID() ID
String() string
Source() ast.Node
Pos() token.Pos
Parent() *Function
// Partial methods:
Operands(rands []*Value) []*Value // nil for non-Instructions
Referrers() *[]Instruction // nil for non-Values
}
// Function represents the parameters, results, and code of a function
// or method.
//
// If Blocks is nil, this indicates an external function for which no
// Go source code is available. In this case, FreeVars and Locals
// are nil too. Clients performing whole-program analysis must
// handle external functions specially.
//
// Blocks contains the function's control-flow graph (CFG).
// Blocks[0] is the function entry point; block order is not otherwise
// semantically significant, though it may affect the readability of
// the disassembly.
// To iterate over the blocks in dominance order, use DomPreorder().
//
// A nested function (Parent()!=nil) that refers to one or more
// lexically enclosing local variables ("free variables") has FreeVars.
// Such functions cannot be called directly but require a
// value created by MakeClosure which, via its Bindings, supplies
// values for these parameters.
//
// If the function is a method (Signature.Recv() != nil) then the first
// element of Params is the receiver parameter.
//
// A Go package may declare many functions called "init".
// For each one, Object().Name() returns "init" but Name() returns
// "init#1", etc, in declaration order.
//
// Pos() returns the declaring ast.FuncLit.Type.Func or the position
// of the ast.FuncDecl.Name, if the function was explicit in the
// source. Synthetic wrappers, for which Synthetic != "", may share
// the same position as the function they wrap.
// Syntax.Pos() always returns the position of the declaring "func" token.
//
// Type() returns the function's Signature.
//
type Function struct {
node
name string
object types.Object // a declared *types.Func or one of its wrappers
method *types.Selection // info about provenance of synthetic methods
Signature *types.Signature
Synthetic string // provenance of synthetic function; "" for true source functions
parent *Function // enclosing function if anon; nil if global
Pkg *Package // enclosing package; nil for shared funcs (wrappers and error.Error)
Prog *Program // enclosing program
Params []*Parameter // function parameters; for methods, includes receiver
FreeVars []*FreeVar // free variables whose values must be supplied by closure
Locals []*Alloc // local variables of this function
Blocks []*BasicBlock // basic blocks of the function; nil => external
Exit *BasicBlock // The function's exit block
AnonFuncs []*Function // anonymous functions directly beneath this one
referrers []Instruction // referring instructions (iff Parent() != nil)
WillExit bool // Calling this function will always terminate the process
WillUnwind bool // Calling this function will always unwind (it will call runtime.Goexit or panic)
*functionBody
}
type functionBody struct {
// The following fields are set transiently during building,
// then cleared.
currentBlock *BasicBlock // where to emit code
objects map[types.Object]Value // addresses of local variables
namedResults []*Alloc // tuple of named results
implicitResults []*Alloc // tuple of results
targets *targets // linked stack of branch targets
lblocks map[*ast.Object]*lblock // labelled blocks
consts []*Const
wr *HTMLWriter
fakeExits BlockSet
blocksets [5]BlockSet
hasDefer bool
}
func (fn *Function) results() []*Alloc {
if len(fn.namedResults) > 0 {
return fn.namedResults
}
return fn.implicitResults
}
// BasicBlock represents an IR basic block.
//
// The final element of Instrs is always an explicit transfer of
// control (If, Jump, Return, Panic, or Unreachable).
//
// A block may contain no Instructions only if it is unreachable,
// i.e., Preds is nil. Empty blocks are typically pruned.
//
// BasicBlocks and their Preds/Succs relation form a (possibly cyclic)
// graph independent of the IR Value graph: the control-flow graph or
// CFG. It is illegal for multiple edges to exist between the same
// pair of blocks.
//
// Each BasicBlock is also a node in the dominator tree of the CFG.
// The tree may be navigated using Idom()/Dominees() and queried using
// Dominates().
//
// The order of Preds and Succs is significant (to Phi and If
// instructions, respectively).
//
type BasicBlock struct {
Index int // index of this block within Parent().Blocks
Comment string // optional label; no semantic significance
parent *Function // parent function
Instrs []Instruction // instructions in order
Preds, Succs []*BasicBlock // predecessors and successors
succs2 [2]*BasicBlock // initial space for Succs
dom domInfo // dominator tree info
pdom domInfo // post-dominator tree info
post int
gaps int // number of nil Instrs (transient)
rundefers int // number of rundefers (transient)
}
// Pure values ----------------------------------------
// A FreeVar represents a free variable of the function to which it
// belongs.
//
// FreeVars are used to implement anonymous functions, whose free
// variables are lexically captured in a closure formed by
// MakeClosure. The value of such a free var is an Alloc or another
// FreeVar and is considered a potentially escaping heap address, with
// pointer type.
//
// FreeVars are also used to implement bound method closures. Such a
// free var represents the receiver value and may be of any type that
// has concrete methods.
//
// Pos() returns the position of the value that was captured, which
// belongs to an enclosing function.
//
type FreeVar struct {
node
name string
typ types.Type
parent *Function
referrers []Instruction
// Transiently needed during building.
outer Value // the Value captured from the enclosing context.
}
// A Parameter represents an input parameter of a function.
//
type Parameter struct {
register
name string
object types.Object // a *types.Var; nil for non-source locals
}
// A Const represents the value of a constant expression.
//
// The underlying type of a constant may be any boolean, numeric, or
// string type. In addition, a Const may represent the nil value of
// any reference type---interface, map, channel, pointer, slice, or
// function---but not "untyped nil".
//
// All source-level constant expressions are represented by a Const
// of the same type and value.
//
// Value holds the exact value of the constant, independent of its
// Type(), using the same representation as package go/constant uses for
// constants, or nil for a typed nil value.
//
// Pos() returns token.NoPos.
//
// Example printed form:
// Const <int> {42}
// Const <untyped string> {"test"}
// Const <MyComplex> {(3 + 4i)}
//
type Const struct {
register
Value constant.Value
}
// A Global is a named Value holding the address of a package-level
// variable.
//
// Pos() returns the position of the ast.ValueSpec.Names[*]
// identifier.
//
type Global struct {
node
name string
object types.Object // a *types.Var; may be nil for synthetics e.g. init$guard
typ types.Type
Pkg *Package
}
// A Builtin represents a specific use of a built-in function, e.g. len.
//
// Builtins are immutable values. Builtins do not have addresses.
// Builtins can only appear in CallCommon.Func.
//
// Name() indicates the function: one of the built-in functions from the
// Go spec (excluding "make" and "new") or one of these ir-defined
// intrinsics:
//
// // wrapnilchk returns ptr if non-nil, panics otherwise.
// // (For use in indirection wrappers.)
// func ir:wrapnilchk(ptr *T, recvType, methodName string) *T
//
// Object() returns a *types.Builtin for built-ins defined by the spec,
// nil for others.
//
// Type() returns a *types.Signature representing the effective
// signature of the built-in for this call.
//
type Builtin struct {
node
name string
sig *types.Signature
}
// Value-defining instructions ----------------------------------------
// The Alloc instruction reserves space for a variable of the given type,
// zero-initializes it, and yields its address.
//
// Alloc values are always addresses, and have pointer types, so the
// type of the allocated variable is actually
// Type().Underlying().(*types.Pointer).Elem().
//
// If Heap is false, Alloc allocates space in the function's
// activation record (frame); we refer to an Alloc(Heap=false) as a
// "stack" alloc. Each stack Alloc returns the same address each time
// it is executed within the same activation; the space is
// re-initialized to zero.
//
// If Heap is true, Alloc allocates space in the heap; we
// refer to an Alloc(Heap=true) as a "heap" alloc. Each heap Alloc
// returns a different address each time it is executed.
//
// When Alloc is applied to a channel, map or slice type, it returns
// the address of an uninitialized (nil) reference of that kind; store
// the result of MakeSlice, MakeMap or MakeChan in that location to
// instantiate these types.
//
// Pos() returns the ast.CompositeLit.Lbrace for a composite literal,
// or the ast.CallExpr.Rparen for a call to new() or for a call that
// allocates a varargs slice.
//
// Example printed form:
// t1 = StackAlloc <*int>
// t2 = HeapAlloc <*int> (new)
//
type Alloc struct {
register
Heap bool
index int // dense numbering; for lifting
}
var _ Instruction = (*Sigma)(nil)
var _ Value = (*Sigma)(nil)
// The Sigma instruction represents an SSI σ-node, which splits values
// at branches in the control flow.
//
// Conceptually, σ-nodes exist at the end of blocks that branch and
// constitute parallel assignments to one value per destination block.
// However, such a representation would be awkward to work with, so
// instead we place σ-nodes at the beginning of branch targets. The
// From field denotes to which incoming edge the node applies.
//
// Within a block, all σ-nodes must appear before all non-σ nodes.
//
// Example printed form:
// t2 = Sigma <int> [#0] t1 (x)
//
type Sigma struct {
register
From *BasicBlock
X Value
live bool // used during lifting
}
// The Phi instruction represents an SSA φ-node, which combines values
// that differ across incoming control-flow edges and yields a new
// value. Within a block, all φ-nodes must appear before all non-φ, non-σ
// nodes.
//
// Pos() returns the position of the && or || for short-circuit
// control-flow joins, or that of the *Alloc for φ-nodes inserted
// during SSA renaming.
//
// Example printed form:
// t3 = Phi <int> 2:t1 4:t2 (x)
//
type Phi struct {
register
Edges []Value // Edges[i] is value for Block().Preds[i]
live bool // used during lifting
}
// The Call instruction represents a function or method call.
//
// The Call instruction yields the function result if there is exactly
// one. Otherwise it returns a tuple, the components of which are
// accessed via Extract.
//
// See CallCommon for generic function call documentation.
//
// Pos() returns the ast.CallExpr.Lparen, if explicit in the source.
//
// Example printed form:
// t3 = Call <()> println t1 t2
// t4 = Call <()> foo$1
// t6 = Invoke <string> t5.String
//
type Call struct {
register
Call CallCommon
}
// The BinOp instruction yields the result of binary operation X Op Y.
//
// Pos() returns the ast.BinaryExpr.OpPos, if explicit in the source.
//
// Example printed form:
// t3 = BinOp <int> {+} t2 t1
//
type BinOp struct {
register
// One of:
// ADD SUB MUL QUO REM + - * / %
// AND OR XOR SHL SHR AND_NOT & | ^ << >> &^
// EQL NEQ LSS LEQ GTR GEQ == != < <= < >=
Op token.Token
X, Y Value
}
// The UnOp instruction yields the result of Op X.
// XOR is bitwise complement.
// SUB is negation.
// NOT is logical negation.
//
//
// Example printed form:
// t2 = UnOp <int> {^} t1
//
type UnOp struct {
register
Op token.Token // One of: NOT SUB XOR ! - ^
X Value
}
// The Load instruction loads a value from a memory address.
//
// For implicit memory loads, Pos() returns the position of the
// most closely associated source-level construct; the details are not
// specified.
//
// Example printed form:
// t2 = Load <int> t1
//
type Load struct {
register
X Value
}
// The ChangeType instruction applies to X a value-preserving type
// change to Type().
//
// Type changes are permitted:
// - between a named type and its underlying type.
// - between two named types of the same underlying type.
// - between (possibly named) pointers to identical base types.
// - from a bidirectional channel to a read- or write-channel,
// optionally adding/removing a name.
//
// This operation cannot fail dynamically.
//
// Pos() returns the ast.CallExpr.Lparen, if the instruction arose
// from an explicit conversion in the source.
//
// Example printed form:
// t2 = ChangeType <*T> t1
//
type ChangeType struct {
register
X Value
}
// The Convert instruction yields the conversion of value X to type
// Type(). One or both of those types is basic (but possibly named).
//
// A conversion may change the value and representation of its operand.
// Conversions are permitted:
// - between real numeric types.
// - between complex numeric types.
// - between string and []byte or []rune.
// - between pointers and unsafe.Pointer.
// - between unsafe.Pointer and uintptr.
// - from (Unicode) integer to (UTF-8) string.
// A conversion may imply a type name change also.
//
// This operation cannot fail dynamically.
//
// Conversions of untyped string/number/bool constants to a specific
// representation are eliminated during IR construction.
//
// Pos() returns the ast.CallExpr.Lparen, if the instruction arose
// from an explicit conversion in the source.
//
// Example printed form:
// t2 = Convert <[]byte> t1
//
type Convert struct {
register
X Value
}
// ChangeInterface constructs a value of one interface type from a
// value of another interface type known to be assignable to it.
// This operation cannot fail.
//
// Pos() returns the ast.CallExpr.Lparen if the instruction arose from
// an explicit T(e) conversion; the ast.TypeAssertExpr.Lparen if the
// instruction arose from an explicit e.(T) operation; or token.NoPos
// otherwise.
//
// Example printed form:
// t2 = ChangeInterface <I1> t1
//
type ChangeInterface struct {
register
X Value
}
// MakeInterface constructs an instance of an interface type from a
// value of a concrete type.
//
// Use Program.MethodSets.MethodSet(X.Type()) to find the method-set
// of X, and Program.MethodValue(m) to find the implementation of a method.
//
// To construct the zero value of an interface type T, use:
// NewConst(constant.MakeNil(), T, pos)
//
// Pos() returns the ast.CallExpr.Lparen, if the instruction arose
// from an explicit conversion in the source.
//
// Example printed form:
// t2 = MakeInterface <interface{}> t1
//
type MakeInterface struct {
register
X Value
}
// The MakeClosure instruction yields a closure value whose code is
// Fn and whose free variables' values are supplied by Bindings.
//
// Type() returns a (possibly named) *types.Signature.
//
// Pos() returns the ast.FuncLit.Type.Func for a function literal
// closure or the ast.SelectorExpr.Sel for a bound method closure.
//
// Example printed form:
// t1 = MakeClosure <func()> foo$1 t1 t2
// t5 = MakeClosure <func(int)> (T).foo$bound t4
//
type MakeClosure struct {
register
Fn Value // always a *Function
Bindings []Value // values for each free variable in Fn.FreeVars
}
// The MakeMap instruction creates a new hash-table-based map object
// and yields a value of kind map.
//
// Type() returns a (possibly named) *types.Map.
//
// Pos() returns the ast.CallExpr.Lparen, if created by make(map), or
// the ast.CompositeLit.Lbrack if created by a literal.
//
// Example printed form:
// t1 = MakeMap <map[string]int>
// t2 = MakeMap <StringIntMap> t1
//
type MakeMap struct {
register
Reserve Value // initial space reservation; nil => default
}
// The MakeChan instruction creates a new channel object and yields a
// value of kind chan.
//
// Type() returns a (possibly named) *types.Chan.
//
// Pos() returns the ast.CallExpr.Lparen for the make(chan) that
// created it.
//
// Example printed form:
// t3 = MakeChan <chan int> t1
// t4 = MakeChan <chan IntChan> t2
//
type MakeChan struct {
register
Size Value // int; size of buffer; zero => synchronous.
}
// The MakeSlice instruction yields a slice of length Len backed by a
// newly allocated array of length Cap.
//
// Both Len and Cap must be non-nil Values of integer type.
//
// (Alloc(types.Array) followed by Slice will not suffice because
// Alloc can only create arrays of constant length.)
//
// Type() returns a (possibly named) *types.Slice.
//
// Pos() returns the ast.CallExpr.Lparen for the make([]T) that
// created it.
//
// Example printed form:
// t3 = MakeSlice <[]string> t1 t2
// t4 = MakeSlice <StringSlice> t1 t2
//
type MakeSlice struct {
register
Len Value
Cap Value
}
// The Slice instruction yields a slice of an existing string, slice
// or *array X between optional integer bounds Low and High.
//
// Dynamically, this instruction panics if X evaluates to a nil *array
// pointer.
//
// Type() returns string if the type of X was string, otherwise a
// *types.Slice with the same element type as X.
//
// Pos() returns the ast.SliceExpr.Lbrack if created by a x[:] slice
// operation, the ast.CompositeLit.Lbrace if created by a literal, or
// NoPos if not explicit in the source (e.g. a variadic argument slice).
//
// Example printed form:
// t4 = Slice <[]int> t3 t2 t1 <nil>
//
type Slice struct {
register
X Value // slice, string, or *array
Low, High, Max Value // each may be nil
}
// The FieldAddr instruction yields the address of Field of *struct X.
//
// The field is identified by its index within the field list of the
// struct type of X.
//
// Dynamically, this instruction panics if X evaluates to a nil
// pointer.
//
// Type() returns a (possibly named) *types.Pointer.
//
// Pos() returns the position of the ast.SelectorExpr.Sel for the
// field, if explicit in the source.
//
// Example printed form:
// t2 = FieldAddr <*int> [0] (X) t1
//
type FieldAddr struct {
register
X Value // *struct
Field int // field is X.Type().Underlying().(*types.Pointer).Elem().Underlying().(*types.Struct).Field(Field)
}
// The Field instruction yields the Field of struct X.
//
// The field is identified by its index within the field list of the
// struct type of X; by using numeric indices we avoid ambiguity of
// package-local identifiers and permit compact representations.
//
// Pos() returns the position of the ast.SelectorExpr.Sel for the
// field, if explicit in the source.
//
// Example printed form:
// t2 = FieldAddr <int> [0] (X) t1
//
type Field struct {
register
X Value // struct
Field int // index into X.Type().(*types.Struct).Fields
}
// The IndexAddr instruction yields the address of the element at
// index Index of collection X. Index is an integer expression.
//
// The elements of maps and strings are not addressable; use StringLookup, MapLookup or
// MapUpdate instead.
//
// Dynamically, this instruction panics if X evaluates to a nil *array
// pointer.
//
// Type() returns a (possibly named) *types.Pointer.
//
// Pos() returns the ast.IndexExpr.Lbrack for the index operation, if
// explicit in the source.
//
// Example printed form:
// t3 = IndexAddr <*int> t2 t1
//
type IndexAddr struct {
register
X Value // slice or *array,
Index Value // numeric index
}
// The Index instruction yields element Index of array X.
//
// Pos() returns the ast.IndexExpr.Lbrack for the index operation, if
// explicit in the source.
//
// Example printed form:
// t3 = Index <int> t2 t1
//
type Index struct {
register
X Value // array
Index Value // integer index
}
// The MapLookup instruction yields element Index of collection X, a map.
//
// If CommaOk, the result is a 2-tuple of the value above and a
// boolean indicating the result of a map membership test for the key.
// The components of the tuple are accessed using Extract.
//
// Pos() returns the ast.IndexExpr.Lbrack, if explicit in the source.
//
// Example printed form:
// t4 = MapLookup <string> t3 t1
// t6 = MapLookup <(string, bool)> t3 t2
//
type MapLookup struct {
register
X Value // map
Index Value // key-typed index
CommaOk bool // return a value,ok pair
}
// The StringLookup instruction yields element Index of collection X, a string.
// Index is an integer expression.
//
// Pos() returns the ast.IndexExpr.Lbrack, if explicit in the source.
//
// Example printed form:
// t3 = StringLookup <uint8> t2 t1
//
type StringLookup struct {
register
X Value // string
Index Value // numeric index
}
// SelectState is a helper for Select.
// It represents one goal state and its corresponding communication.
//
type SelectState struct {
Dir types.ChanDir // direction of case (SendOnly or RecvOnly)
Chan Value // channel to use (for send or receive)
Send Value // value to send (for send)
Pos token.Pos // position of token.ARROW
DebugNode ast.Node // ast.SendStmt or ast.UnaryExpr(<-) [debug mode]
}
// The Select instruction tests whether (or blocks until) one
// of the specified sent or received states is entered.
//
// Let n be the number of States for which Dir==RECV and Tᵢ (0 ≤ i < n)
// be the element type of each such state's Chan.
// Select returns an n+2-tuple
// (index int, recvOk bool, r₀ T₀, ... rₙ-1 Tₙ-1)
// The tuple's components, described below, must be accessed via the
// Extract instruction.
//
// If Blocking, select waits until exactly one state holds, i.e. a
// channel becomes ready for the designated operation of sending or
// receiving; select chooses one among the ready states
// pseudorandomly, performs the send or receive operation, and sets
// 'index' to the index of the chosen channel.
//
// If !Blocking, select doesn't block if no states hold; instead it
// returns immediately with index equal to -1.
//
// If the chosen channel was used for a receive, the rᵢ component is
// set to the received value, where i is the index of that state among
// all n receive states; otherwise rᵢ has the zero value of type Tᵢ.
// Note that the receive index i is not the same as the state
// index index.
//
// The second component of the triple, recvOk, is a boolean whose value
// is true iff the selected operation was a receive and the receive
// successfully yielded a value.
//
// Pos() returns the ast.SelectStmt.Select.
//
// Example printed form:
// t6 = SelectNonBlocking <(index int, ok bool, int)> [<-t4, t5<-t1]
// t11 = SelectBlocking <(index int, ok bool)> []
//
type Select struct {
register
States []*SelectState
Blocking bool
}
// The Range instruction yields an iterator over the domain and range
// of X, which must be a string or map.
//
// Elements are accessed via Next.
//
// Type() returns an opaque and degenerate "rangeIter" type.
//
// Pos() returns the ast.RangeStmt.For.
//
// Example printed form:
// t2 = Range <iter> t1
//
type Range struct {
register
X Value // string or map
}
// The Next instruction reads and advances the (map or string)
// iterator Iter and returns a 3-tuple value (ok, k, v). If the
// iterator is not exhausted, ok is true and k and v are the next
// elements of the domain and range, respectively. Otherwise ok is
// false and k and v are undefined.
//
// Components of the tuple are accessed using Extract.
//
// The IsString field distinguishes iterators over strings from those
// over maps, as the Type() alone is insufficient: consider
// map[int]rune.
//
// Type() returns a *types.Tuple for the triple (ok, k, v).
// The types of k and/or v may be types.Invalid.
//
// Example printed form:
// t5 = Next <(ok bool, k int, v rune)> t2
// t5 = Next <(ok bool, k invalid type, v invalid type)> t2
//
type Next struct {
register
Iter Value
IsString bool // true => string iterator; false => map iterator.
}
// The TypeAssert instruction tests whether interface value X has type
// AssertedType.
//
// If !CommaOk, on success it returns v, the result of the conversion
// (defined below); on failure it panics.
//
// If CommaOk: on success it returns a pair (v, true) where v is the
// result of the conversion; on failure it returns (z, false) where z
// is AssertedType's zero value. The components of the pair must be
// accessed using the Extract instruction.
//
// If AssertedType is a concrete type, TypeAssert checks whether the
// dynamic type in interface X is equal to it, and if so, the result
// of the conversion is a copy of the value in the interface.
//
// If AssertedType is an interface, TypeAssert checks whether the
// dynamic type of the interface is assignable to it, and if so, the
// result of the conversion is a copy of the interface value X.
// If AssertedType is a superinterface of X.Type(), the operation will
// fail iff the operand is nil. (Contrast with ChangeInterface, which
// performs no nil-check.)
//
// Type() reflects the actual type of the result, possibly a
// 2-types.Tuple; AssertedType is the asserted type.
//
// Pos() returns the ast.CallExpr.Lparen if the instruction arose from
// an explicit T(e) conversion; the ast.TypeAssertExpr.Lparen if the
// instruction arose from an explicit e.(T) operation; or the
// ast.CaseClause.Case if the instruction arose from a case of a
// type-switch statement.
//
// Example printed form:
// t2 = TypeAssert <int> t1
// t4 = TypeAssert <(value fmt.Stringer, ok bool)> t1
//
type TypeAssert struct {
register
X Value
AssertedType types.Type
CommaOk bool
}
// The Extract instruction yields component Index of Tuple.
//
// This is used to access the results of instructions with multiple
// return values, such as Call, TypeAssert, Next, Recv,
// MapLookup and others.
//
// Example printed form:
// t7 = Extract <bool> [1] (ok) t4
//
type Extract struct {
register
Tuple Value
Index int
}
// Instructions executed for effect. They do not yield a value. --------------------
// The Jump instruction transfers control to the sole successor of its
// owning block.
//
// A Jump must be the last instruction of its containing BasicBlock.
//
// Pos() returns NoPos.
//
// Example printed form:
// Jump → b1
//
type Jump struct {
anInstruction
Comment string
}
// The Unreachable pseudo-instruction signals that execution cannot
// continue after the preceding function call because it terminates
// the process.
//
// The instruction acts as a control instruction, jumping to the exit
// block. However, this jump will never execute.
//
// An Unreachable instruction must be the last instruction of its
// containing BasicBlock.
//
// Example printed form:
// Unreachable → b1
//
type Unreachable struct {
anInstruction
}
// The If instruction transfers control to one of the two successors
// of its owning block, depending on the boolean Cond: the first if
// true, the second if false.
//
// An If instruction must be the last instruction of its containing
// BasicBlock.
//
// Pos() returns the *ast.IfStmt, if explicit in the source.
//
// Example printed form:
// If t2 → b1 b2
//
type If struct {
anInstruction
Cond Value
}
type ConstantSwitch struct {
anInstruction
Tag Value
// Constant branch conditions. A nil Value denotes the (implicit
// or explicit) default branch.
Conds []Value
}
type TypeSwitch struct {
register
Tag Value
Conds []types.Type
}
// The Return instruction returns values and control back to the calling
// function.
//
// len(Results) is always equal to the number of results in the
// function's signature.
//
// If len(Results) > 1, Return returns a tuple value with the specified
// components which the caller must access using Extract instructions.
//
// There is no instruction to return a ready-made tuple like those
// returned by a "value,ok"-mode TypeAssert, MapLookup or Recv or
// a tail-call to a function with multiple result parameters.
//
// Return must be the last instruction of its containing BasicBlock.
// Such a block has no successors.
//
// Pos() returns the ast.ReturnStmt.Return, if explicit in the source.
//
// Example printed form:
// Return
// Return t1 t2
//
type Return struct {
anInstruction
Results []Value
}
// The RunDefers instruction pops and invokes the entire stack of
// procedure calls pushed by Defer instructions in this function.
//
// It is legal to encounter multiple 'rundefers' instructions in a
// single control-flow path through a function; this is useful in
// the combined init() function, for example.
//
// Pos() returns NoPos.
//
// Example printed form:
// RunDefers
//
type RunDefers struct {
anInstruction
}
// The Panic instruction initiates a panic with value X.
//
// A Panic instruction must be the last instruction of its containing
// BasicBlock, which must have one successor, the exit block.
//
// NB: 'go panic(x)' and 'defer panic(x)' do not use this instruction;
// they are treated as calls to a built-in function.
//
// Pos() returns the ast.CallExpr.Lparen if this panic was explicit
// in the source.
//
// Example printed form:
// Panic t1
//
type Panic struct {
anInstruction
X Value // an interface{}
}
// The Go instruction creates a new goroutine and calls the specified
// function within it.
//
// See CallCommon for generic function call documentation.
//
// Pos() returns the ast.GoStmt.Go.
//
// Example printed form:
// Go println t1
// Go t3
// GoInvoke t4.Bar t2
//
type Go struct {
anInstruction
Call CallCommon
}
// The Defer instruction pushes the specified call onto a stack of
// functions to be called by a RunDefers instruction or by a panic.
//
// See CallCommon for generic function call documentation.
//
// Pos() returns the ast.DeferStmt.Defer.
//
// Example printed form:
// Defer println t1
// Defer t3
// DeferInvoke t4.Bar t2
//
type Defer struct {
anInstruction
Call CallCommon
}
// The Send instruction sends X on channel Chan.
//
// Pos() returns the ast.SendStmt.Arrow, if explicit in the source.
//
// Example printed form:
// Send t2 t1
//
type Send struct {
anInstruction
Chan, X Value
}
// The Recv instruction receives from channel Chan.
//
// If CommaOk, the result is a 2-tuple of the value above
// and a boolean indicating the success of the receive. The
// components of the tuple are accessed using Extract.
//
// Pos() returns the ast.UnaryExpr.OpPos, if explicit in the source.
// For receive operations implicit in ranging over a channel,
// Pos() returns the ast.RangeStmt.For.
//
// Example printed form:
// t2 = Recv <int> t1
// t3 = Recv <(int, bool)> t1
type Recv struct {
register
Chan Value
CommaOk bool
}
// The Store instruction stores Val at address Addr.
// Stores can be of arbitrary types.
//
// Pos() returns the position of the source-level construct most closely
// associated with the memory store operation.
// Since implicit memory stores are numerous and varied and depend upon
// implementation choices, the details are not specified.
//
// Example printed form:
// Store {int} t2 t1
//
type Store struct {
anInstruction
Addr Value
Val Value
}
// The BlankStore instruction is emitted for assignments to the blank
// identifier.
//
// BlankStore is a pseudo-instruction: it has no dynamic effect.
//
// Pos() returns NoPos.
//
// Example printed form:
// BlankStore t1
//
type BlankStore struct {
anInstruction
Val Value
}
// The MapUpdate instruction updates the association of Map[Key] to
// Value.
//
// Pos() returns the ast.KeyValueExpr.Colon or ast.IndexExpr.Lbrack,
// if explicit in the source.
//
// Example printed form:
// MapUpdate t3 t1 t2
//
type MapUpdate struct {
anInstruction
Map Value
Key Value
Value Value
}
// A DebugRef instruction maps a source-level expression Expr to the
// IR value X that represents the value (!IsAddr) or address (IsAddr)
// of that expression.
//
// DebugRef is a pseudo-instruction: it has no dynamic effect.
//
// Pos() returns Expr.Pos(), the start position of the source-level
// expression. This is not the same as the "designated" token as
// documented at Value.Pos(). e.g. CallExpr.Pos() does not return the
// position of the ("designated") Lparen token.
//
// DebugRefs are generated only for functions built with debugging
// enabled; see Package.SetDebugMode() and the GlobalDebug builder
// mode flag.
//
// DebugRefs are not emitted for ast.Idents referring to constants or
// predeclared identifiers, since they are trivial and numerous.
// Nor are they emitted for ast.ParenExprs.
//
// (By representing these as instructions, rather than out-of-band,
// consistency is maintained during transformation passes by the
// ordinary SSA renaming machinery.)
//
// Example printed form:
// ; *ast.CallExpr @ 102:9 is t5
// ; var x float64 @ 109:72 is x
// ; address of *ast.CompositeLit @ 216:10 is t0
//
type DebugRef struct {
anInstruction
Expr ast.Expr // the referring expression (never *ast.ParenExpr)
object types.Object // the identity of the source var/func
IsAddr bool // Expr is addressable and X is the address it denotes
X Value // the value or address of Expr
}
// Embeddable mix-ins and helpers for common parts of other structs. -----------
// register is a mix-in embedded by all IR values that are also
// instructions, i.e. virtual registers, and provides a uniform
// implementation of most of the Value interface: Value.Name() is a
// numbered register (e.g. "t0"); the other methods are field accessors.
//
// Temporary names are automatically assigned to each register on
// completion of building a function in IR form.
//
type register struct {
anInstruction
typ types.Type // type of virtual register
referrers []Instruction
}
type node struct {
source ast.Node
id ID
}
func (n *node) setID(id ID) { n.id = id }
func (n node) ID() ID { return n.id }
func (n *node) setSource(source ast.Node) { n.source = source }
func (n *node) Source() ast.Node { return n.source }
func (n *node) Pos() token.Pos {
if n.source != nil {
return n.source.Pos()
}
return token.NoPos
}
// anInstruction is a mix-in embedded by all Instructions.
// It provides the implementations of the Block and setBlock methods.
type anInstruction struct {
node
block *BasicBlock // the basic block of this instruction
}
// CallCommon is contained by Go, Defer and Call to hold the
// common parts of a function or method call.
//
// Each CallCommon exists in one of two modes, function call and
// interface method invocation, or "call" and "invoke" for short.
//
// 1. "call" mode: when Method is nil (!IsInvoke), a CallCommon
// represents an ordinary function call of the value in Value,
// which may be a *Builtin, a *Function or any other value of kind
// 'func'.
//
// Value may be one of:
// (a) a *Function, indicating a statically dispatched call
// to a package-level function, an anonymous function, or
// a method of a named type.
// (b) a *MakeClosure, indicating an immediately applied
// function literal with free variables.
// (c) a *Builtin, indicating a statically dispatched call
// to a built-in function.
// (d) any other value, indicating a dynamically dispatched
// function call.
// StaticCallee returns the identity of the callee in cases
// (a) and (b), nil otherwise.
//
// Args contains the arguments to the call. If Value is a method,
// Args[0] contains the receiver parameter.
//
// Example printed form:
// t3 = Call <()> println t1 t2
// Go t3
// Defer t3
//
// 2. "invoke" mode: when Method is non-nil (IsInvoke), a CallCommon
// represents a dynamically dispatched call to an interface method.
// In this mode, Value is the interface value and Method is the
// interface's abstract method. Note: an abstract method may be
// shared by multiple interfaces due to embedding; Value.Type()
// provides the specific interface used for this call.
//
// Value is implicitly supplied to the concrete method implementation
// as the receiver parameter; in other words, Args[0] holds not the
// receiver but the first true argument.
//
// Example printed form:
// t6 = Invoke <string> t5.String
// GoInvoke t4.Bar t2
// DeferInvoke t4.Bar t2
//
// For all calls to variadic functions (Signature().Variadic()),
// the last element of Args is a slice.
//
type CallCommon struct {
Value Value // receiver (invoke mode) or func value (call mode)
Method *types.Func // abstract method (invoke mode)
Args []Value // actual parameters (in static method call, includes receiver)
Results Value
}
// IsInvoke returns true if this call has "invoke" (not "call") mode.
func (c *CallCommon) IsInvoke() bool {
return c.Method != nil
}
// Signature returns the signature of the called function.
//
// For an "invoke"-mode call, the signature of the interface method is
// returned.
//
// In either "call" or "invoke" mode, if the callee is a method, its
// receiver is represented by sig.Recv, not sig.Params().At(0).
//
func (c *CallCommon) Signature() *types.Signature {
if c.Method != nil {
return c.Method.Type().(*types.Signature)
}
return c.Value.Type().Underlying().(*types.Signature)
}
// StaticCallee returns the callee if this is a trivially static
// "call"-mode call to a function.
func (c *CallCommon) StaticCallee() *Function {
switch fn := c.Value.(type) {
case *Function:
return fn
case *MakeClosure:
return fn.Fn.(*Function)
}
return nil
}
// Description returns a description of the mode of this call suitable
// for a user interface, e.g., "static method call".
func (c *CallCommon) Description() string {
switch fn := c.Value.(type) {
case *Builtin:
return "built-in function call"
case *MakeClosure:
return "static function closure call"
case *Function:
if fn.Signature.Recv() != nil {
return "static method call"
}
return "static function call"
}
if c.IsInvoke() {
return "dynamic method call" // ("invoke" mode)
}
return "dynamic function call"
}
// The CallInstruction interface, implemented by *Go, *Defer and *Call,
// exposes the common parts of function-calling instructions,
// yet provides a way back to the Value defined by *Call alone.
//
type CallInstruction interface {
Instruction
Common() *CallCommon // returns the common parts of the call
Value() *Call
}
func (s *Call) Common() *CallCommon { return &s.Call }
func (s *Defer) Common() *CallCommon { return &s.Call }
func (s *Go) Common() *CallCommon { return &s.Call }
func (s *Call) Value() *Call { return s }
func (s *Defer) Value() *Call { return nil }
func (s *Go) Value() *Call { return nil }
func (v *Builtin) Type() types.Type { return v.sig }
func (v *Builtin) Name() string { return v.name }
func (*Builtin) Referrers() *[]Instruction { return nil }
func (v *Builtin) Pos() token.Pos { return token.NoPos }
func (v *Builtin) Object() types.Object { return types.Universe.Lookup(v.name) }
func (v *Builtin) Parent() *Function { return nil }
func (v *FreeVar) Type() types.Type { return v.typ }
func (v *FreeVar) Name() string { return v.name }
func (v *FreeVar) Referrers() *[]Instruction { return &v.referrers }
func (v *FreeVar) Parent() *Function { return v.parent }
func (v *Global) Type() types.Type { return v.typ }
func (v *Global) Name() string { return v.name }
func (v *Global) Parent() *Function { return nil }
func (v *Global) Referrers() *[]Instruction { return nil }
func (v *Global) Token() token.Token { return token.VAR }
func (v *Global) Object() types.Object { return v.object }
func (v *Global) String() string { return v.RelString(nil) }
func (v *Global) Package() *Package { return v.Pkg }
func (v *Global) RelString(from *types.Package) string { return relString(v, from) }
func (v *Function) Name() string { return v.name }
func (v *Function) Type() types.Type { return v.Signature }
func (v *Function) Token() token.Token { return token.FUNC }
func (v *Function) Object() types.Object { return v.object }
func (v *Function) String() string { return v.RelString(nil) }
func (v *Function) Package() *Package { return v.Pkg }
func (v *Function) Parent() *Function { return v.parent }
func (v *Function) Referrers() *[]Instruction {
if v.parent != nil {
return &v.referrers
}
return nil
}
func (v *Parameter) Object() types.Object { return v.object }
func (v *Alloc) Type() types.Type { return v.typ }
func (v *Alloc) Referrers() *[]Instruction { return &v.referrers }
func (v *register) Type() types.Type { return v.typ }
func (v *register) setType(typ types.Type) { v.typ = typ }
func (v *register) Name() string { return fmt.Sprintf("t%d", v.id) }
func (v *register) Referrers() *[]Instruction { return &v.referrers }
func (v *anInstruction) Parent() *Function { return v.block.parent }
func (v *anInstruction) Block() *BasicBlock { return v.block }
func (v *anInstruction) setBlock(block *BasicBlock) { v.block = block }
func (v *anInstruction) Referrers() *[]Instruction { return nil }
func (t *Type) Name() string { return t.object.Name() }
func (t *Type) Pos() token.Pos { return t.object.Pos() }
func (t *Type) Type() types.Type { return t.object.Type() }
func (t *Type) Token() token.Token { return token.TYPE }
func (t *Type) Object() types.Object { return t.object }
func (t *Type) String() string { return t.RelString(nil) }
func (t *Type) Package() *Package { return t.pkg }
func (t *Type) RelString(from *types.Package) string { return relString(t, from) }
func (c *NamedConst) Name() string { return c.object.Name() }
func (c *NamedConst) Pos() token.Pos { return c.object.Pos() }
func (c *NamedConst) String() string { return c.RelString(nil) }
func (c *NamedConst) Type() types.Type { return c.object.Type() }
func (c *NamedConst) Token() token.Token { return token.CONST }
func (c *NamedConst) Object() types.Object { return c.object }
func (c *NamedConst) Package() *Package { return c.pkg }
func (c *NamedConst) RelString(from *types.Package) string { return relString(c, from) }
// Func returns the package-level function of the specified name,
// or nil if not found.
//
func (p *Package) Func(name string) (f *Function) {
f, _ = p.Members[name].(*Function)
return
}
// Var returns the package-level variable of the specified name,
// or nil if not found.
//
func (p *Package) Var(name string) (g *Global) {
g, _ = p.Members[name].(*Global)
return
}
// Const returns the package-level constant of the specified name,
// or nil if not found.
//
func (p *Package) Const(name string) (c *NamedConst) {
c, _ = p.Members[name].(*NamedConst)
return
}
// Type returns the package-level type of the specified name,
// or nil if not found.
//
func (p *Package) Type(name string) (t *Type) {
t, _ = p.Members[name].(*Type)
return
}
func (s *DebugRef) Pos() token.Pos { return s.Expr.Pos() }
// Operands.
func (v *Alloc) Operands(rands []*Value) []*Value {
return rands
}
func (v *BinOp) Operands(rands []*Value) []*Value {
return append(rands, &v.X, &v.Y)
}
func (c *CallCommon) Operands(rands []*Value) []*Value {
rands = append(rands, &c.Value)
for i := range c.Args {
rands = append(rands, &c.Args[i])
}
return rands
}
func (s *Go) Operands(rands []*Value) []*Value {
return s.Call.Operands(rands)
}
func (s *Call) Operands(rands []*Value) []*Value {
return s.Call.Operands(rands)
}
func (s *Defer) Operands(rands []*Value) []*Value {
return s.Call.Operands(rands)
}
func (v *ChangeInterface) Operands(rands []*Value) []*Value {
return append(rands, &v.X)
}
func (v *ChangeType) Operands(rands []*Value) []*Value {
return append(rands, &v.X)
}
func (v *Convert) Operands(rands []*Value) []*Value {
return append(rands, &v.X)
}
func (s *DebugRef) Operands(rands []*Value) []*Value {
return append(rands, &s.X)
}
func (v *Extract) Operands(rands []*Value) []*Value {
return append(rands, &v.Tuple)
}
func (v *Field) Operands(rands []*Value) []*Value {
return append(rands, &v.X)
}
func (v *FieldAddr) Operands(rands []*Value) []*Value {
return append(rands, &v.X)
}
func (s *If) Operands(rands []*Value) []*Value {
return append(rands, &s.Cond)
}
func (s *ConstantSwitch) Operands(rands []*Value) []*Value {
rands = append(rands, &s.Tag)
for i := range s.Conds {
rands = append(rands, &s.Conds[i])
}
return rands
}
func (s *TypeSwitch) Operands(rands []*Value) []*Value {
rands = append(rands, &s.Tag)
return rands
}
func (v *Index) Operands(rands []*Value) []*Value {
return append(rands, &v.X, &v.Index)
}
func (v *IndexAddr) Operands(rands []*Value) []*Value {
return append(rands, &v.X, &v.Index)
}
func (*Jump) Operands(rands []*Value) []*Value {
return rands
}
func (*Unreachable) Operands(rands []*Value) []*Value {
return rands
}
func (v *MapLookup) Operands(rands []*Value) []*Value {
return append(rands, &v.X, &v.Index)
}
func (v *StringLookup) Operands(rands []*Value) []*Value {
return append(rands, &v.X, &v.Index)
}
func (v *MakeChan) Operands(rands []*Value) []*Value {
return append(rands, &v.Size)
}
func (v *MakeClosure) Operands(rands []*Value) []*Value {
rands = append(rands, &v.Fn)
for i := range v.Bindings {
rands = append(rands, &v.Bindings[i])
}
return rands
}
func (v *MakeInterface) Operands(rands []*Value) []*Value {
return append(rands, &v.X)
}
func (v *MakeMap) Operands(rands []*Value) []*Value {
return append(rands, &v.Reserve)
}
func (v *MakeSlice) Operands(rands []*Value) []*Value {
return append(rands, &v.Len, &v.Cap)
}
func (v *MapUpdate) Operands(rands []*Value) []*Value {
return append(rands, &v.Map, &v.Key, &v.Value)
}
func (v *Next) Operands(rands []*Value) []*Value {
return append(rands, &v.Iter)
}
func (s *Panic) Operands(rands []*Value) []*Value {
return append(rands, &s.X)
}
func (v *Sigma) Operands(rands []*Value) []*Value {
return append(rands, &v.X)
}
func (v *Phi) Operands(rands []*Value) []*Value {
for i := range v.Edges {
rands = append(rands, &v.Edges[i])
}
return rands
}
func (v *Range) Operands(rands []*Value) []*Value {
return append(rands, &v.X)
}
func (s *Return) Operands(rands []*Value) []*Value {
for i := range s.Results {
rands = append(rands, &s.Results[i])
}
return rands
}
func (*RunDefers) Operands(rands []*Value) []*Value {
return rands
}
func (v *Select) Operands(rands []*Value) []*Value {
for i := range v.States {
rands = append(rands, &v.States[i].Chan, &v.States[i].Send)
}
return rands
}
func (s *Send) Operands(rands []*Value) []*Value {
return append(rands, &s.Chan, &s.X)
}
func (recv *Recv) Operands(rands []*Value) []*Value {
return append(rands, &recv.Chan)
}
func (v *Slice) Operands(rands []*Value) []*Value {
return append(rands, &v.X, &v.Low, &v.High, &v.Max)
}
func (s *Store) Operands(rands []*Value) []*Value {
return append(rands, &s.Addr, &s.Val)
}
func (s *BlankStore) Operands(rands []*Value) []*Value {
return append(rands, &s.Val)
}
func (v *TypeAssert) Operands(rands []*Value) []*Value {
return append(rands, &v.X)
}
func (v *UnOp) Operands(rands []*Value) []*Value {
return append(rands, &v.X)
}
func (v *Load) Operands(rands []*Value) []*Value {
return append(rands, &v.X)
}
// Non-Instruction Values:
func (v *Builtin) Operands(rands []*Value) []*Value { return rands }
func (v *FreeVar) Operands(rands []*Value) []*Value { return rands }
func (v *Const) Operands(rands []*Value) []*Value { return rands }
func (v *Function) Operands(rands []*Value) []*Value { return rands }
func (v *Global) Operands(rands []*Value) []*Value { return rands }
func (v *Parameter) Operands(rands []*Value) []*Value { return rands }